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Abstract

We give a probabilistic construction of the Galton—Watson tree
conditioned on its height by decomposing it along the line of descent
to the left—most particle at maximal height. This construction provides
a representation of the final generation size as a sum of independent
increments. Based on this representation we prove limit laws for the
final generation size of a Galton—Watson tree conditioned on its height

and total progeny, respectively.

1 Introduction

Let T denote the random family tree of a Galton—Watson branching process
starting with a single founding ancestor, where each particle independently
has probability py of producing k offspring. For a detailed definition and dis-
cussion of this process, we refer to [2], [1]. Regard 7' as a rooted planar tree
with the distinguishable offspring of each vertex ordered from left to right.
Let =Y kpi be the mean number of children per particle and denote by
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Z,(T) the nth generation size (= number of vertices with distance n from
the root). We write H(T') for the height of the tree (= maximal distance of
a vertex from the root) and ¢ = P(Z,(T) — 0) for the extinction proba-
bility of the branching process. We assume 0 < pg < 1 throughout, so that
PH(T)=n)>0 foranyn and ¢=1 < p<1.

In this paper we study the conditional structure of the family tree T given
that H(T) = n. Clearly, particles no longer evolve independently of each
other nor homogeneously in time. However, the Galton—Watson tree con-
ditioned on its height satisfies some striking consistency and independence
conditions. These properties allow to construct the tree inductively by at-
taching independent subtrees at the bottom of the line of descent to the
left—-most particle at maximal height. This provides a decomposition of the
final generation size of a conditioned Galton—Watson tree into a sum of inde-
pendent increments. The construction, which is the analog of the backward
construction of the Galton—-Watson tree conditioned on non—extinction in
[4], is explained in section 2. In section 3 we prove a strong limit law for the
final generation size for arbitrary offspring distribution. In the critical case
with finite variance the limiting distribution of the final generation size is
known to be the same, if instead the total population size of the tree were
conditioned to be large [7]. We give a simple probabilistic proof of this fact.
The concept of spinal decompositions as an approach to proving limit the-
orems for Galton—-Watson processes goes back to Lyons, Pemantle, and
Peres [10]. Similar and related constructions for the genealogical tree arising

from a branching particle system have occured in [5], [3].

2 Growing a conditioned Galton—Watson tree from

the top

Our starting point is the following simple but crucial observation: The law of

the subtree founded by the left—-most child of the root, who has a descendant



in the final generation of a Galton—Watson tree conditioned on height n+1,
is the same as the law of a Galton-Watson tree conditioned on height n.
This conditional law is independent of the first generation size and the rank
of the child. The subtrees founded by the siblings to the left and right of
the distinguished first generation particle are independent Galton—Watson
trees conditioned on height strictly less than n and n + 1, respectively.

More precisely, let H(T) denote the height of the Galton-Watson tree T,

i.e. for n > 0,
HT)=n 1< Z,(T) >0, Z,41(T) =0,

and let T, 1< i< 7, (T), be the subtrees founded by the first generation
particles of 7. For a finite tree 7" with Z; (1) > 0 write R(T) for the rank

of the left—-most such subtree with maximal height,
R(T) = min{1 < i < Z(T)| H(TY) = H(T) — 1}.

We sum up the properties stated above in the following lemma (we ab-
breviate R = R(T), H = H(T),...). The proof is immediate from the

Galton—Watson conditions of independence and time-homogeneity.
Lemma 2.1 The subtrees T, 1 < i < Zy, are conditionally independent
gwven {R=j,Z1=k;H=n+1}, 1 <j<k<oo, n>0, wih
£z, =0), 1<i<yj—1;
LTV R=j,Zy =k, H=n+1)={ £(T|H=n), i=j
LT Zpt1=0), j+1<i<k

The conditional joint distribution of R and 7y is
PR=j,Zi=k|H=n4+1)=c,pp P(Z, = 0" P(Z, 11 = 0)", (1)

where ¢, = P(H =n)/P(H=n+1), n>0.



The properties stated in lemma 2.1 suggest to grow the conditioned
Galton—Watson tree from the top backwards. We now construct an increas-
ing sequence of trees (T},),>0 such that 7, has law £(T|H = n). The tree
Tn—l—l is obtained from 7, by attaching independent subtrees at the bottom

of the line of descent of the left—-most particle at maximal height.

Construction. Let (V,41,W,11), n > 0, be a sequence of independent

random variables with distribution (1),
P(Vir =, Wagr = k) = o pp P(Zy = 0) 7' P(Zopa = 0)°7,

and let Ty be a Galton-Watson tree of height 0 (i.e. Ty consists of its root
only). Inductively construct T4, n > 0, by the following procedure:

o Let the first generation size of Tn—l—l be Wi41.

e Let T, be the subtree founded by the V,+1th first generation particle
of Tn_|_1 .

e Attach independent Galton—Watson trees conditioned on height strictly
less than » to the V41 — 1 siblings to the left of the distinguished first

generation particle.

e Attach independent Galton—Watson trees conditioned on height strictly
less than n 4+ 1 to the W, 1 — Vi, 41 siblings to the right of the distin-

guished first generation particle.

The tree T}, has the same probabilistic structure as a Galton-Watson tree

conditioned on height n.
Proposition 2.2 Suppose 0 < pg < 1. Then

L£(T,) = £(T|H =n) for any n > 0.

Proof. Per induction on n using the properties stated in Lemma 2.1. O



Remark. For any offspring distribution (px)x>0, (Va, W,) has a weak limit
(Voo, W), say, with distribution

P(Voozjvwoo:k) = Coopqu_lv 1§]§k7 (2)
where
T T P(H k—1 -1
o= Jim e = Jim ) (qu p) ozl @)

Note that V, is conditionally uniform on {1,--- k} given W, =k, k > 1.
This displays the fact that, as n — oo, all particles in the final generation
of a Galton—Watson tree conditioned on height n are descendants of the
same first generation particle. In subcritical and critical cases p < 1 the

extinction probability ¢ equals 1, i.e. W, has the size—biased distribution
(™ ki) k1

The particles in the final generation n of T}, are the particles in generation
n+1 of T, 1 descended from the distinguished first generation particle. Any
other particle in the final generation n + 1 of Tn—l—l is a descendant of one of
the W41 — V,,41 siblings to the right of the distinguished first generation
particle. This provides the following representation of the final generation

size of a Galton—Watson tree conditioned on its height:

Let Z,; and X, 41, n > 0, ¢+ > 1, be independent random variables where

and X,41 has distribution £(W,41 — Vig1),

P(Xpy1 = k) = cuP(Zng1 = 0)F Z p; P yED >0, (5)
7=k+1

Define Zy := 1 and

n-l-l
Zps1 o= Zp + ZZ”“ n > 0. (6)



Corollary 2.3 Suppose 0 < pg < 1. Then

L(Z,) = £(Zy|H = n) for any n > 0.
Proof. By construction of (Tn)nZO and Proposition 2.2. O

Remark. A representation similar to (6) holds jointly for the last k¥ < n
generations of a Galton—Watson tree conditioned on height n. However, note
that also siblings to the left of particles in the distinguished line of descent
can have descendants in generations n — j, j > 1. Alternatively, one can
construct the tree along the backbone of the left—most particle in generation

n—Fk+1.

3 Limit laws for the final generation size

Our first result states that, as n — oo, the final generation size of a Galton—
Watson tree conditioned on height n has a proper limit with finite mean.
The statement holds for arbitrary offspring distribution. We remark that
strong convergence of the joint distribution of the final k£ generation sizes can

be derived in much the same way (compare the remark following Corollary

2.3).

Proposition 3.1 Suppose 0 < pg < 1. Then

Z, 2% Z. as n— oo, (7)
EZ, = lim FZ, < . (8)
n— 0o

Proof. Since (Zn)nZO has non—negative increments, it has an almost sure
limit Z., say, and lim, .., £Z, = EZ,, < co. By (6), the independence
properties of the X, 11 and Z,, ;, and Corollary 2.3

EZn_|_1 - EZn — EXn_|_1 E(Zn|Zn_|_1 — 0)
= EXn_|_1 E(Zn|Zn > O,Zn+1 = 0) P(Zn > 0|Zn_|_1 = 0)
— EX,1 EZ, P(Z, > 0|Zosr = 0). 9)



For any increasing sequence (a,),>0 with ag > 0,

log a1 —loga, < agl(an-l-l - an) < aal(an-l—l -

and, consequently,

lim a, < 0 <— Za;l(am_l — a,) < 00.

n—0oo

Take a,, = EZ,, then (9) implies

EZsw <00 < > EXpp1 P(Zy > 0] Z541 = 0) < o0

n=0

i)

(10)

(Note that the quantity on the right-hand side of (10) is the expected num-

ber of ‘contributing’ siblings of the particles in the distinguished line of

descent.) We begin with an upper bound of the first factor of the sum-

mands on the right-hand side of (10). We write f < ¢ if there exist positive
constants ¢ and ¢z such that ¢; f(n) < g(n) < czf(n), n > 0.

EX, NOR Y kP(Zupr =0 D piP(Z, =
k=1 7=k+1
o j—1
< sz g1 = 0)
71=2 k=1

< Z] piP(Zng1 = 0)'~

0)]—(k+1)

(11)

For the other term in the sum on the right-hand side of (10) note that

P(H =n)

—_

3)

< PMH=n) X PH

= n+1). (12)

In view of (11), (12), and the binomial theorem, we conclude (here ¢ denotes

some positive constant)

> EXup1 P(Zy > 01 Zng1 = 0)

n=0



< ¢ ZZjQPjP(Zn-H = O)j_IP(H =n+1)
= ¢ jp; Y JiPH<ny'P(H=n+1)
7=1 =0
< e Y i Y P(H <n+1)) - P(H <)
j=1 =0
< ¢ ijjP(H < oo)j < 00, (13)

J=1
since either yu = Z(;il Jjp; <lorg= P(H < oo) <1 (in fact, the inequality
Zj>1jquj < ¢ holds). The claim of Proposition 3.1 follows from (10)
and (13). a

From Proposition 3.1 we derive the following limit law for the final gen-
eration size of a Galton—Watson tree with arbitrary offspring distribution
conditioned on height n. In the critical, finite variance case the result is
due to Kesten, Ney, and Spitzer [6]. Seneta [11] removed the second mo-
ment assumption. In fact, no conditions on the offspring distributions are

required.

Theorem 3.2 Let v, = L(Zy|H = n), n > 0, and suppose 0 < py < 1.

The sequence (v,),>0 converges in a strong sense,

o0
Y s = wall < o0, (1)
n=0

where || - || denotes total variation norm. If v., denotes the limiting distri-

bution of (vy)n>0, then
Voo(k) = pgﬂ-lm k > 17 (15)

where 7y = lim, oo P(Z, = k)/P(H = n) is a solution of

T = coo 37 P(Zy = K| Zo = j). (16)
j=1



Proof. By Corollary 2.3 we have v, = £(Z,). Consequently,
[[Vn+1 — vall < 2P(Zn-l-l # Zn)

Since (Zn)nZO has independent non—negative, integer—valued increments,
S o (Zng1 # Zn) < o0 iff P(Zoo < o0) = 1 (by the Borel-Cantelli lemma).
Clearly, (8) implies Z., < o a.s., which establishes (14). For the represen-
tation of v, in (15) note that

— k
P(Zy =klH=n) = % — Veol(k) as n — oo,
which implies existence of 7y := lim,, o, P(Z, = k)/P(H = n). Finally, for
any k > 1,

P = oL P e =K =1)

= ¢ P(Z,=j|H =n)py P(Z1 = k| Zo = j). (17)
i=1
To justify that summation and limiting procedures may be interchanged on
the right-hand side of (17), note that the non-negativity of the increments
of (Zn)nZO implies

P(Zow=13) > P(Z,=j\P(Zoo = 7,) > P(Z,=37)P(Zoo = 7Z1), (18)

where the second factor on the right-hand side of (18) is positive by (14)
and the fact, that P(Zm_H = Zm) > 0 for any m > 1 due to the assumption
po > 0. Hence, by (17), Fatou’s lemma and the dominated convergence

theorem,

n—00 4

To= oo im Y P(Zy = j) po? P(Z1 = k| Zo = j)
7=1

= €0 D Veold) Po  P(Z1 = k| Zo = j),
7=1

which is equation (16). a



In the critical case p = 1 with finite variance 02 = > k(k—1)pg < oo, the
limiting distribution of the final generation size is the same, if the Galton—
Watson tree T is conditioned on its total population size instead,

lim P(Zy =k|IN =n) = v(k), k> 1, (19)

n—oo, n—1€hN

where N(T) = >~77, Zx(T) and h denotes the span of the offspring distri-
bution (px)x>o0 (see Theorem 2 in [7]). The criticality assumption is crucial

for (19) to hold: Suppose that for some 6 > 0,

pz = Cekpk7 k‘ Z 07 and Zkzopz = 1.

Then the distribution of T conditioned on its total population size being n
is the same for the two offspring distributions (pi)r>0 and (p})r>0, whereas
the distributions v., and v/ differ (e.g.,if po =1 —pg =¢, then v, (2) = 1
as € — 0). In [7] the limit law (19) is derived from a joint local limit
theorem for H, Zp, and N. We give here a simple probabilistic proof of a

somewhat weaker result.

Theorem 3.3 Suppose = > 72 kpr =1, 0% = 302 k(k — 1)pr < oo,
and py > 0. Then
lim P(Zg =kIN >n) = veo(k), k>1, (20)

n—0oo

where v, is the limit of £L(Zy|H = n) from Theorem 3.2.

Proof. We will show that, as m — oo, Zp is conditionally independent of
N given H = m. To this end recall the construction of T, along the line of
descent to the left-most particle at maximal height m and let v;, 0 < 57 < 'm,
be the distinguished particle’s ancestor in generation m — j. Clearly, v; is
a child of vj41; vy, is the founding ancestor, and vy is the distinguished

particle itself. Decompose the total population size of T}, by writing

N(Tp) = 14371, Y;,

10



where Y; is the number of particles in 7,,,, whose most recent ancestor in
the distinguished line of descent is v;. By construction of T, the random
variables Y;, 1 < j < m, are independent and the law of ¥; — 1 can be
represented as a random sum of independent copies of the total population
size of Galton—Watson trees conditioned on extinction at generation j — 1
and j, respectively. In particular, the law of Y; does not depend on m and

P(Y;>n) > P(X;>1)P(N >nlH<j)

2
=< P(H < jIN>n)P(IN>n), n,j>1, (21)

—_
~—

where N = N(T'), H = H(T). To estimate the right-hand side of (21) we
use the following asymptotics for the height and the size of a Galton—Watson
tree T',

N = = ; 22

n—>oo,17£r—11€hNn2 ( n) o2 ( )
_1 _ 2W

’C(n 2H|N = n) n—)oo,n_:IEhN T (23)

where W™ is the maximum of standard Brownian excursion of duration 1

(see [8], Lemma 2.1.4 and Theorem 2.4.3). It is immediate from (22) that
L(nTIN|N > n) 4 U asn— 00, (24)

where U is uniformly distributed on (0, 1). Consequently,

2 b
L 2H|N >n) -5

as n — 00, (25)

with W* and U independent. From (21), (22), and (25) we obtain the
following asymptotic lower bound for the tail of £(Y}).

liminf jP(Y; > 25%) > ca 2 P@W* < 2~ %0U) > 0, 2 > 0. (26)

J]—00
Estimating N,, = N(T,,) through the maximum of the Y;, m/2 < j <m,

we obtain from (26),

lim inf P(N,, > 2m*) >0, z > 0. (27)

m—00

11



Now recall that £(Zy|H = m, N > n) = £(Z,,|N,, > n) by Proposition 2.2.

Hence, for any ¢ > 0,

\P(Zg = K|N > n) — v (k)]

< SO IP(Zi = HH = mN > ) — vy ()] P(H = m|N > n)
m=1

< sup |P(Zn =k|Ny >n) —veo (k)| + P(H <eyn|N > n). (28)
mzey/n

We may assume vy, (k) > 0 since vo, (k) = 0 implies P(Z,, = k) = 0 for any
m > 1. Then (27) implies
sup |P(Zy = k|Npy > 1) — voo (K|
m>e/n

= sup |Veo(k)'P(N, > n, Z,, = k) — P(N,, > n)
m>e/n

< sup |P(Ny > 0|Zeq = k) = P(Nyy, > n)
m>e/n

+ oo (k)1 iu}\)/_P(Zm + Zoo). (29)

The second term on the right-hand side of (29) goes to 0 as n — oo by
Proposition 3.1. We will show below that

|P(Ny, > n|Ze = k) — P(N,, > n)| < Plo>m), (30)

where ¢ is a finite coupling time depending on k& but not on m or n. Hence,

if we pass to the limit n — oo in (28), then (29), (30) and the limit law (25)
imply

limsup |[P(Zy = k|N > n) — veo (k)] < PW™ < e0U) (31)

n—0oo
for any € > 0. Then let ¢ — 0 in (31) to establish (20). We finally ex-
plain the coupling that leads to (30): Let (Y/,Z});>1 have distribution
LY}, Zj) 51 Ze = k) and let

T=min{j > 0|Z; = Z.}, 7' =min{j > 07 =2}

12



Observe that for any j > 1
L(Y)izild > ) = L((Yi)izsld > 7), (32)

since Y; is conditionally independent of Z., = k given ¢ > 7. Also, note that

(30) is the coupling inequality for the coupling time
o=min{j >7V7| Zle Y, = Zle 1.

In view of (32) we have to produce a coupling for sums of independent but
not identically distributed random variables. However, note that the Y; have
a weak limit by (2) and the fact that {H < m} / {H < oo}. It is well-
known that in this case successfull couplings exist (a Mineka or Ornstein

coupling will do, see e.g. [9], Chap. 2),i.e. 0 < o0 a.s. O
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