
a

me.
ation

e

t
ut it
ation

l

Journal of Algebra 262 (2003) 413–423

www.elsevier.com/locate/jalgebr

A divisorial valuation with irrational volume

Alex Küronyaa,b

a Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA
b Computer and Automation Institute of the Hungarian Academy of Sciences, PO Box 63,

H-1518 Budapest, Hungary

Received 24 June 2002

Communicated by Craig Huneke

1. Introduction

The purpose of this paper is to construct a divisorial valuation with irrational volu
Let (R,m,C) be ann-dimensional noetherian local ring and consider a rank-one valu
v of its fraction field centered onR (i.e.,v is nonnegative onR and strictly positive onm).
Then one can associate tov its volume

vol(v) = lim sup
m

length(R/qm)

mn/n! . (1)

Hereqk denotes the ideal of elements with valuation at leastk. This is an analogue of th
Samuel multiplicity

e(a) := lim sup
m

length(R/am)

mn/n! (2)

of anm-primary ideala ⊆ R. In fact, if qm = am for a fixed ideala then it is evident tha
e(a)= vol(v). The volume of a valuation has implicitly been studied already in [4], b
was first explicitly defined in [5]. The terminology is intended to emphasize the rel
with global invariants of linear series on projective varieties.

A natural question is to what extent the properties of vol(v) mirror those of the Samue
multiplicity. Results of [5,9] assert that

vol(v) = lim
m→∞

e(qm)

mn
, (3)
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so in any event the volume is governed by multiplicity. A basic fact about multiplici
which is not apparent from the definition above—is thate(a) is always an integer. Howeve
simple examples show that this is false for the volume.

Example. Consider the monomial valuation ofC(x, y) centered at the origin ofA2 and
defined byv(x)= 1, v(y)= α for α ∈ R. It follows directly from the definition that

vol(v) = 1

α
(4)

which is irrational ifα is.

In the example however, the irrationality was ‘built into’ the valuation in the sense
if one choosesα to be rational then the volume will also be rational. On the other h
supposev is a divisorial valuation, that is, a valuation with rkv = 1 and trdegC v = n− 1
(or, in other words, a valuation attached to an irreducible exceptional divisor of a bira
map). In dimension two, Cutkosky and Srinivas [4, Corollary 1] prove that under
hypotheses the volume is indeed rational. Their proof relies on the existence of Z
decompositions on surfaces. Our objective here is to show that in higher dimension
are divisorial valuations with irrational volume.

Specifically, we prove

Theorem 1.1. Let R = C[x1, x2, x3, x4](x1,x2,x3,x4). There exists a divisorial valuation v of
C(x1, x2, x3, x4) centered in R such that vol(v) /∈ Q.

Note that divisorial valuations always have value groupZ. A related invariant of a val
uation is the associated graded ring

grv R :=
⊕
m�0

qm

q
+
m

whereq+
m = {g ∈ K | v(g) > m}. It is easily observed (for a proof see, for example, [

that if grv R is finitely generated then vol(v) is rational. As a consequence we obtai
simple construction of a divisorial valuation whose associated graded ring is not fi
generated (another example of this phenomenon has been described in [1, Proposi

The construction uses in particular ideas suggested by [4] and recent irrationality
on asymptotic invariants of algebraic varieties [2,3]. One starts with a smooth
C ⊆ P3 with irrational asymptotic Castelnuovo–Mumford regularity. RealizingP3 as the
exceptional divisor of Bl0(C4), the order of vanishing alongC determines a divisoria
valuation onC4. We relate the asymptotic regularity ofC to the volume of the resultin
valuation to arrive at the desired conclusion.
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2. A volume formula for certain divisorial valuations

In this section we give an explicit formula for the volume of divisorial valuations
a certain kind. We will consider valuationsv of the field C(x1, . . . , xn) centered at the
origin o of An, hence the local ring will beR =OAn,o.

The divisorial valuations in question will be constructed by two successive blowu
follows: we start with the blowupπ :W = Blo(An) → An of the origin with exceptiona
divisorV � Pn−1. Next, we pick a smooth subvarietyT ⊆ V and form the blow-upp :Y =
BlT (W) →W of W alongT with exceptional divisorE. We denote the compositionπ ◦p
by f . The valuationv is the valuation determined byE; hence its valuation ring isOY,E .

E ⊆ Y = BlT (W)

p

f

T ⊆ Pn−1 = V ⊆ W = Blo(An)

π

o ∈ An

As qm = f∗OY (−mE)⊆OAn,o is mo-primary, length(R/qm)= dimC OAn,o/qm is finite.
We will obtain an explicit formula for the colengths of the valuation idealsqm in terms

of the cohomology of the ideal sheafIT ⊆OPn−1 of T in Pn−1.

Proposition 2.1. With notation as above,

length(R/qm)=
m−1∑
s=0

(
h0(Pn−1,OPn−1(s)

)− h0(Pn−1,Im−s
T (s)

))
. (5)

Proof. First observe thath ∈ f∗OY (−mE)⊆ C[x1, . . . , xn] if and only ifπ∗h vanishes on
T to order at leastm. Since the order of vanishing onT is a local invariant, we can mak
computations in local coordinates. Specifically, in suitable local coordinates on an
open subsetU ⊆W meetingT , π is given by

(x1, x2, . . . , xn) ∈U

π |U

⊆ W

π

(x1, x1x2, . . . , x1xn) ∈ An.

Hence ifh =∑i1,i2,...,in
ai1i2···inx

i1
1 · · ·xinn then

(π∗h)(x1, x2, . . . , xn) = h(x1, x1x2, . . . , x1xn)
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ad−i2−···−in,i2,...,inx2
i2 · · ·xnin

=
∑
d

x1
dgd(x2, . . . , xn). (6)

Heregd ∈ C[x2, . . . , xn] is a degreed polynomial and ford1 �= d2 the set of coefficient
ai1i2···in involved in the polynomialsgd1 andgd2 are disjoint. Therefore the conditions w
get on the vanishing of various derivatives of thegdi ’s are independent for differentdi ’s.
We compute the partial derivatives ofπ∗h onT ⊆ {x1 = 0} = V |U :

(
∂m1
x1

∂m2
x2

· · ·∂mn
xn

)
(π∗h)(0, x2, . . . , xn)=m1!

(
∂m2
x2

· · ·∂mn
xn

gm1

)
(x2, . . . , xn). (7)

For π∗h to vanish onT up to orderm is the same as asking∂m2
x2 · · ·∂mn

xn gm1 to vanish
identically onT for all m2 + · · ·+mn <m−m1. This happens exactly if eachgs vanishes
to orderm− s onT , thereforegs determines an element inH 0(Pn−1,Im−s

T (s)). Hence we
can deduce that the codimension ofqm = f∗OY (−mE) is

m−1∑
s=0

(
h0(Pn−1,OPn−1(s)

)− h0(Pn−1,Im−s
T (s)

))
. ✷ (8)

Corollary 2.1. Let v be a divisorial valuation of C(x1, . . . , xn) centered at the origin of
An as in the construction above. Then

vol(v) = lim sup
m

1

mn/n!
m−1∑
s=0

(
h0(Pn−1,OPn−1(s)

)− h0(Pn−1,Im−s
T (s)

))

= 1− lim inf
m

1

mn/n!
m−1∑
s=0

h0(Pn−1,Im−s
T (s)

)
. (9)

3. An example of a divisorial valuation with irrational volume

Based on the construction of the previous section we will exhibit an example of
visorial valuation with irrational volume. As said earlier, this example also establishe
existence of a divisorial valuation whose associated graded ring is not finitely gene
The source of irrationality is the choice of a certain configurationC ⊆ S ⊆ Pn−1 with C

having irrational asymptotic regularity (for the basic results on asymptotic Castelnu
Mumford regularity the reader can consult [6, Section 1.8]). The known exampl
irrational asymptotic regularity involve either K3 or abelian surfaces. The instance w
use is the K3 surface constructed in [2].

Using [8, Theorem 2.9], Cutkosky shows that there exists a K3 surfaceS such
that Pic(X) � Z3 and its intersection form isq(x, y, z) = 4x2 − 4y2 − 4z2 in suitable



A. Küronya / Journal of Algebra 262 (2003) 413–423 417

r

e

the

s

sions
f

at

n be
of

nn
coordinates. We choose this surfaceS for our computations. ThenS ⊆ P3 is a degree fou
surface, whose nef cone and the effective cone are equal and given by

Nef(S) = {α ∈ NS(S)R
∣∣ (α2)� 0, (α · h)� 0

}
whereh is any ample class onS. Even thoughS ⊆ P3 has degree four, for the clarity of th
exposition we will writed for its degree throughout the paper.

Fix a very ample divisorH on S that embeds it intoP3 with degreed and pickC to
be an effective divisor such that the linetH − C in the Néron–Severi space intersects
boundary of the nef cone at the irrational valueλ. Then the asymptotic irregularityλ of C
with respect to the fixed very ample divisorH will be irrational [2]. In the computation
we will chooseH = (1,0,0) andC = (9,1,1) on our K3 surface.

The main ingredients of the volume formula of the previous section are the dimen
of the cohomology groupsH 0(P3,Ir

C(m)) which we will relate to the cohomology o
certain divisors on the blowup ofC ⊆ P3. Let H ′ ⊆ P3 be a hyperplane such th
H ′ · S = H and denote the exceptional divisor of the blowupπ :X = BlC P3 → P3 by F .
ThenF = π−1C andπ∗S = S + F with S the strict transform ofS. In what follows let
H = π∗H ′.

One hasπ∗OX(mH − rF ) � Ir
C(m) andRiπ∗OX(mH − rF ) = 0 for i > 0 (cf. [7,

Proposition 10.2]), and hence

hi
(
P3,Ir

C(m)
)= hi

(
X,mH − rF

)
(10)

for all i,m, r � 0. The dimensions of the cohomology groups appearing in (10) ca
computed explicitly fori = 0 thanks to Riemann–Roch. We will then interpret the sum
the dominant terms of theh0(P3,Ir

C(m))’s appearing in the volume formula as a Riema
sum for a certain integral.

Proposition 3.1. One has

vol(v) = 1− 4

( ∫
BA

((
mH − rF

)3)+ ∫
OB

((
mH − rF

)3))
. (11)

The integrals are computed using the parameterizations

BA: γ1(t) = (t,1− t),
λ

λ+ 1
� t � 1, (12)

OB: γ2(t) =
(

λ

λ− d

(
(d + 1)t − d

)
,

1

λ− d

(
(d + 1)t − d

))
,

d

d + 1
� t � λ

λ+ 1
,

(13)

over the piecewise linear curve ABO with O the origin, A = (0,1) and B the intersection
of the lines m= λr and m+ r = 1.
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The integrals in the proposition are illustrated in Fig. 1. We next give a det
description of our results while postponing the proofs to the last section. First, we e
the computation ofh0(X,mH − rF ) = h0(P3,Ir

C(m)). There are three cases to t
computation, depending on the ratiom/r. We will show that ifm/r > λ then

h0(X,mH − rF
)= χ

(
mH − rF

)
. (14)

In the casem/r < λ we will prove

h0(mH − rF
)= h0((m− d)H − (r − 1)F

)
, (15)

which used iteratively will either lead back to the previous case—ifm/r > d—or give

h0(mH − rF
)= 0

if m/r < d . This is illustrated on Fig. 2 by the arrows between the dots. We summ
these results in the next proposition.

Proposition 3.2. With notation as above,

h0(X,mH − rF
)=




χ
(
mH − rF

)
if
m

r
� λ,

χ

((
d

⌊
m− dr

λ− d

⌋
+m− dr

)
H −

(⌊
m− dr

λ− d

⌋)
F

)
if λ >

m

r
� d ,

0 if d >
m

r
.

(16)

We obtain the integral expression for the volume ofv with these computations alon
with the volume formula of the previous section.
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Using the formula of Proposition 3.1 we can explicitly calculate the volume of
corresponding valuation (for example, with the computer algebra package Maple
result

vol(v) = 144629

2352980
+ 1408

588245

√
2 (17)

is indeed irrational.

4. Proofs

This section contains the proofs of Propositions 3.1 and 3.2. Before we move
the proofs themselves, we make some observations. We keep the notation of the p
sections.

First, by Kodaira vanishing onS and the description of the effective cone, one has

h0(S,mH − rC) =
{ 1

2
χ(S,mH − rC) if λ <

m

r
,

0 otherwise.
(18)

Next, we set up a short exact sequence that we will use repeatedly. Specifically, ten
the sequence

0→ OX

(−S
)→ OX → O → 0 (19)
S
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by OX((m+ d)H − (r + 1)F ) leads to

0 → OX

(
mH − rF

)→OX

(
(m+ d)H − (r + 1)F

)
→ OS

(
(m+ d)H − (r + 1)C

)→ 0 (20)

for all m,r � 0 via the isomorphisms

OX

(−dH +F
)�OX

(−S
)

(21)

and

OS

(
(m+ d)H − (r + 1)C

)�OS

(
(m+ d)H − (r + 1)F

)
. (22)

We next prove Proposition 3.2.

Proof of 3.2. According to [2, Theorem 9], ifm/r > λ then all higher cohomology o
mH − rF vanishes, soh0(X,mH − rF )= χ(mH − rF ). Form/r < λ, consider the long
exact sequence corresponding to (20) withm− d , r − 1 in the place ofm, r:

0 →H 0(X, (m− d)H − (r − 1)F
)→H 0(X,mH − rF

)→ H 0(S,mH − rC)→ ·· · .
(23)

Observe that ifm/r < λ then the last term is zero and

h0(X,mH − rF
)= h0(X, (m− d)H − (r − 1)F

)
. (24)

We can continue this process replacing againm,r by m− d, r − 1 until eitherm− d < 0
which impliesh0(X, (m− d)H − (r − 1)F )= 0 (this will happen exactly whenm/r < d

for the starting pair) or when(m− d)/(r − 1) becomes� λ. So far we have

h0(X,mH − rF
)= h0(X,m′H − r ′F

)
(25)

wherem′, r ′ are of the formm− ds, r − s (s a positive integer) such that eitherm′ < 0 and
henceh0(X,mH − rF )= 0 orm′ > r ′λ. The former case happens if and only ifm< dr.

In the latter case, letL be the line with sloped and going through the point(r,m). Then
the integral point with the biggestr-coordinate inL ∩ {m/r > λ} is (r ′,m′). In concrete
terms,

m′ = d

⌊
m− dr

λ− d

⌋
+ (m− dr), r ′ =

⌊
m− dr

λ− d

⌋
. (26)

As m′/r ′ > λ (hence all higher cohomology ofm′H − r ′F vanishes), this completes th
proof. ✷

Finally, we move on to the proof of the integral formula for the volume.
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Proof of 3.1. According to the volume formula of Section 2,

vol(v) = 1− lim
k

4!
k4

k−1∑
i=0

h0(P3,Ik−i
C (i)

)
. (27)

In terms of the(r,m)-plane, we add the termsh0(X,mH − rF ) on the line segmen
m+ r = k (m, r � 0) for fixed k. First we introduce some notation. Let

j (i) := (d + 1)i − dk and l := 1

λ− d
, (28)

I1(k) :=
{
i

∣∣∣ d <
i

k − i
< λ

}
, (29)

I2(k) :=
{
i

∣∣∣ λ � i

k − i

}
. (30)

In other words,I1(k) is the part of the line segmentm+ r = k (m, r � 0) that falls in the
region between the linesm/r = d andm/r = λ while I2(k) is the part falling in the region
between them-axis and the linem/r = λ.

k−1∑
i=0

h0(P3,Ik−1
C (i)

) =
k−1∑
i=0

h0(X, iH − (k − i)F
)

=
∑
I1(k)

χ
((
d
⌊
j (i)l

⌋+ j (i)
)
H − ⌊j (i)l⌋F )

+
∑
I2(k)

χ
((
iH − (k − i)F

))
. (31)

Riemann–Roch theorem on 3-folds implies that

χ
(
iH − (k − i)F

)= 1

3!
((
iH − (k − i)F

)3)+ O
(
k2) (32)

and so

χ
((
d
⌊
j (i)l

⌋+ j (i)
)
H − ⌊j (i)l⌋F ) = 1

3!
(((

d
⌊
j (i)l

⌋+ j (i)
)
H − ⌊j (i)l⌋F )3)

+ O
(
k2). (33)

Therefore
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vol(v) = 1− lim
k

(
4

k4

∑
I1(k)

(((
d
⌊
j (i)l

⌋+ j (i)
)
H − ⌊j (i)l⌋F )3)

+ 4

k4

∑
I2(k)

((
iH − (k − i)F

)3))

= 1− lim
k

(
4

k

∑
I1(k)

((
d

�j l� + j

k
H − �j l�

k
F

)3)

+ 4

k

∑
I2(k)

((
i

k
H −

(
1− i

k

)
F

)3))
. (34)

Forn ∈ N andx ∈ R one has ∣∣∣∣x − 1

n
�nx�

∣∣∣∣� 1

n
.

As j (i)/k = (d + 1)i/k − d , this then implies

vol(v) = 1− lim
k

(
4

k

∑
I1(k)

((
(dl + 1)

(
(d + 1)

i

k
− d

)
H − l

(
(d + 1)

i

k
− d

)
F

)3)

+ 4

k

∑
I2(k)

((
i

k
H −

(
1− i

k

)
F

)3))

= 1− 4




λ
λ+1∫
d

d+1

(((
(dl + 1)

(
(d + 1)t − d

))
H − l

(
(d + 1)t − d

)
F
)3)dt

+
1∫

λ
λ+1

((
tH − (1− t)F

)3)dt

. ✷ (35)
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