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1. Introduction

The purpose of this paper is to construct a divisorial valuation with irrational volume.
Let (R, m, C) be ann-dimensional noetherian local ring and consider a rank-one valuation
v of its fraction field centered oR (i.e., v is nonnegative oR and strictly positive om).
Then one can associateiats volume

length(R/qm)

vol(v) =lim supW. (1)

Hereq; denotes the ideal of elements with valuation at I¢agthis is an analogue of the
Samuel multiplicity

length(R/a™)

m'"/n!

(2)

e(a) :=limsup
m

of anm-primary ideala C R. In fact, if q,, = a™ for a fixed ideala then it is evident that
e(a) = vol(v). The volume of a valuation has implicitly been studied already in [4], but it
was first explicitly defined in [5]. The terminology is intended to emphasize the relation
with global invariants of linear series on projective varieties.

A natural question is to what extent the properties ofwpmirror those of the Samuel
multiplicity. Results of [5,9] assert that

vol(v) = lim e(qm)’ (3

m—oo mh
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so in any event the volume is governed by multiplicity. A basic fact about multiplicity—
which is not apparent from the definition above—is @ is always an integer. However,
simple examples show that this is false for the volume.

Example. Consider the monomial valuation @f(x, y) centered at the origin of? and
defined byv(x) =1, v(y) = « for @ € R. It follows directly from the definition that

vol(v) = % (4)

which is irrational ife is.

In the example however, the irrationality was ‘built into’ the valuation in the sense that
if one chooses to be rational then the volume will also be rational. On the other hand,
suppose is a divisorial valuation, that is, a valuation withuk=1 and trdegv=n — 1
(or, in other words, a valuation attached to an irreducible exceptional divisor of a birational
map). In dimension two, Cutkosky and Srinivas [4, Corollary 1] prove that under mild
hypotheses the volume is indeed rational. Their proof relies on the existence of Zariski
decompositions on surfaces. Our objective here is to show that in higher dimensions there
are divisorial valuations with irrational volume.

Specifically, we prove

Theorem 1.1. Let R = C[x1, x2, X3, X4l (x1,x5,x3,x4) - THEr€ eXists a divisorial valuation v of
C(x1, x2, x3, x4) centered in R such that vol(v) ¢ Q.

Note that divisorial valuations always have value gr@up related invariant of a val-
uation is the associated graded ring

grURzz@q—ﬁ

whereq;; = {g € K | v(g) > m}. It is easily observed (for a proof see, for example, [5])
that if gr, R is finitely generated then val) is rational. As a consequence we obtain a
simple construction of a divisorial valuation whose associated graded ring is not finitely
generated (another example of this phenomenon has been described in [1, Proposition 2]).

The construction uses in particular ideas suggested by [4] and recent irrationality results
on asymptotic invariants of algebraic varieties [2,3]. One starts with a smooth curve
C < P2 with irrational asymptotic Castelnuovo—Mumford regularity. RealiZitfgas the
exceptional divisor of BJ(C*), the order of vanishing along determines a divisorial
valuation onC#. We relate the asymptotic regularity 6fto the volume of the resulting
valuation to arrive at the desired conclusion.
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2. A volumeformulafor certain divisorial valuations

In this section we give an explicit formula for the volume of divisorial valuations of
a certain kind. We will consider valuationsof the field C(x1, ..., x,) centered at the
origin o of A", hence the local ring will b& = Oan ,.

The divisorial valuations in question will be constructed by two successive blowups as
follows: we start with the blowupr : W = Bl,(A") — A" of the origin with exceptional
divisor V ~ P"~1, Next, we pick a smooth subvariefyC V and form the blow-up:Y =
Bl (W) — W of W alongT with exceptional divisolE. We denote the compositiono p
by f. The valuatiorv is the valuation determined bly; hence its valuation ring i®y .

E CY =Bl (W)

)

TCPrl=vcw=BIl,(A"

N

o€ A"

As qm = fxOy(—mE) € Opn , is m,-primary, lengtir /q,,) = dimg Opn o /qm 1S finite.
We will obtain an explicit formula for the colengths of the valuation ideglsn terms
of the cohomology of the ideal sheBf < Op,—1 of T in P21,

Proposition 2.1. With notation as above,

m—1

length(R/qm) = > (h°(P"~%, Opu-1(s)) — kO (P 1, I (). (5)
s=0

Proof. Firstobservethdt € f,Oy(—mE) C C[xy, ..., x,] ifand only if z*h vanishes on

T to order at least:. Since the order of vanishing dhis a local invariant, we can make
computations in local coordinates. Specifically, in suitable local coordinates on an affine
open subselV € W meetingT, r is given by

(x1,x2,...,x,) €U C W
\Ljﬂu l?‘[
(x1, x1X2, ..., x1x,) € A",

Henceifh =3, . . @ijipiyXy - x4 then

(T*h)(x1, X2, ..., Xp) = h(x1,X1X2, ..., X1X,)
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., . .
=2 ! Y dmipmmipigiy X2 "
d 02,..0,ip
d
B ©
d

Heregy € Clxp, ..., x,] is a degreel polynomial and ford; # d» the set of coefficients
ajyi,-i, iNVolved in the polynomialg,, andgg, are disjoint. Therefore the conditions we
get on the vanishing of various derivatives of #hg's are independent for different’s.
We compute the partial derivativesofh onT C {x1 =0} =V|y:

(972 -+ 0 ) (r*h)(0, x2, ..., xn) = mal (B0 - " gy ) (X2, - -, Xn). (7

For 7*h to vanish onT up to orderm is the same as askin@f}?- - - d;," g, to vanish
identically onT for all ma + - - -+ m, < m — m1. This happens exactly if eagh vanishes
to orderm — s on T, thereforeg, determines an element #%(P" 1, Z77%(s)). Hence we

can deduce that the codimensiomgf= f.Oy(—mE) is

m—1

o (ROP Y Opia(9) = RO(PTLIET(9). O (8)
s=0

Corollary 2.1. Let v be a divisorial valuation of C(x1, ..., x,) centered at the origin of
A" asin the construction above. Then

m—1

> (O(P"E Opus()) = RO(P* L I (9)))
s=0

vol(v) = limsup "l
m m*/n!

m—1
— 1 limi O(mn—1 sm—s
= 1-liminf S}_O:h (B I7 7 (). 9)

3. An exampleof adivisorial valuation with irrational volume

Based on the construction of the previous section we will exhibit an example of a di-
visorial valuation with irrational volume. As said earlier, this example also establishes the
existence of a divisorial valuation whose associated graded ring is not finitely generated.
The source of irrationality is the choice of a certain configuratiog S < P*~1 with C
having irrational asymptotic regularity (for the basic results on asymptotic Castelnuovo—
Mumford regularity the reader can consult [6, Section 1.8]). The known examples of
irrational asymptotic regularity involve either K3 or abelian surfaces. The instance we will
use is the K3 surface constructed in [2].

Using [8, Theorem 2.9], Cutkosky shows that there exists a K3 surfaseich
that PigX) ~ Z3 and its intersection form ig(x, y, z) = 4x? — 4y? — 472 in suitable
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coordinates. We choose this surfatéor our computations. Thefi C P2 is a degree four
surface, whose nef cone and the effective cone are equal and given by

Nef(S) = {a € NS(S)r | (&%) >0, (o h) >0}

whereh is any ample class ofl. Even thoughs < IP® has degree four, for the clarity of the
exposition we will writed for its degree throughout the paper.

Fix a very ample diviso on S that embeds it int@®3 with degreed and pickC to
be an effective divisor such that the linH — C in the Néron—Severi space intersects the
boundary of the nef cone at the irrational valuer'hen the asymptotic irregularity of C
with respect to the fixed very ample divisfir will be irrational [2]. In the computations
we will chooseH = (1,0,0) andC = (9, 1, 1) on our K3 surface.

The main ingredients of the volume formula of the previous section are the dimensions
of the cohomology groupHO(]P’g’,Ig(m)) which we will relate to the cohomology of
certain divisors on the blowup of < P3. Let H' C P2 be a hyperplane such that
H'- S = H and denote the exceptional divisor of the blowtpX = Bl P3 — P3 by F.
ThenF = 7~1C andx*S = § + F with S the strict transform of. In what follows let
H=n*H'.

One hast,Ox(mH — rF) ~I.(m) and R'w,Ox(mH — rF) = 0 for i > 0 (cf. [7,
Proposition 10.2]), and hence

W' (P3, Z5(m)) = h' (X, mH — rF) (10)

for all i, m,r > 0. The dimensions of the cohomology groups appearing in (10) can be
computed explicitly fori = 0 thanks to Riemann—Roch. We will then interpret the sum of
the dominant terms of the® (P3, I (m))'s appearing in the volume formula as a Riemann
sum for a certain integral.

Proposition 3.1. One has

vo|(v):1_4</((mﬁ_rF)3)+/((mﬁ_rF)“‘)). (11)
BA OB
The integrals are computed using the parameterizations
BA: ®O=@,1-10 —ﬁ—<t<1 (12)
. Y1 =\, s A+l !l x4,

A 1 d A
OB: ya(t) = (m((d+1)t—d), m((d-i—l)l—d)), — <t < ——,

d+1 A+1
(13)

over the piecewiselinear curve AB O with O theorigin, A = (0, 1) and B the intersection
of thelinesm =Arandm +r = 1.
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m

Fig. 1.

The integrals in the proposition are illustrated in Fig. 1. We next give a detailed
description of our results while postponing the proofs to the last section. First, we explain
the computation ofi®(X,mH — rF) = h%(P3,I7.(m)). There are three cases to the
computation, depending on the ratig'r. We will show that ifm/r > A then

hO(X,mﬁ—rF)zx(mﬁ—rF). (14)
In the casen/r < A we will prove
ho(mH —rF)=h(m — d)H — (r — DF), (15)
which used iteratively will either lead back to the previous case#if > d—or give
h(mH —rF)=0

if m/r <d. This is illustrated on Fig. 2 by the arrows between the dots. We summarize
these results in the next proposition.

Proposition 3.2. With notation as above,

x(mH —rF) if = >3,
r

oo - |0 )T ([527])7)

We obtain the integral expression for the volumevakith these computations along
with the volume formula of the previous section.
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m A

Fig. 2.

Using the formula of Proposition 3.1 we can explicitly calculate the volume of the
corresponding valuation (for example, with the computer algebra package Maple). The
result

14462 14
629 08\/5

vol(v) =
@) 2352980+ 588245

(17)

is indeed irrational.

4, Proofs

This section contains the proofs of Propositions 3.1 and 3.2. Before we move on to
the proofs themselves, we make some observations. We keep the notation of the previous
sections.

First, by Kodaira vanishing ofi and the description of the effective cone, one has

1 . m
0 otherwise.

Next, we set up a short exact sequence that we will use repeatedly. Specifically, tensoring
the sequence

0— Ox(—S)—> Ox > 05— 0 (19)
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by Ox((m +d)H — (r + 1)F) leads to
0 - Ox(mH —rF) — Ox((m+d)H — (r + DF)
— Os((m+d)H — (r +1)C) - 0 (20)
for all m, r > 0 via the isomorphisms
Ox(—dH + F) ~ Ox(-5) (21)
and
Os(m+d)H — (r + 1)C) =~ Og((m +d)H — (r + DF). (22)
We next prove Proposition 3.2.

Proof of 3.2. According to [2, Theorem 9], ifn/r > A then all higher cohomology of
mH — r F vanishes, sa®(X,mH —rF) = x(mH —r F). Form/r < A, consider the long
exact sequence corresponding to (20) with- d, r — 1 in the place ofn, r:

0— H°(X,m —d)H — (r —1)F) — HY(X,mH —rF) — H°(S,mH —rC) — - --.
(23)
Observe that ifn /r < A then the last term is zero and
WO(X,mH —rF)=h°(X,(m —d)H — (r — )F). (24)

We can continue this process replacing agaim by m — d, r — 1 until eitherm —d <0
which impliesh®(X, (m — d)H — (r — 1) F) = 0 (this will happen exactly whem /r < d
for the starting pair) or whe@n — d)/(r — 1) becomes> A. So far we have

hO(X,mﬁ—rF) =h0(X,m'I_-I—r'F) (25)

wherem’, ¥’ are of the formn — ds, r — s (s a positive integer) such that eithef < 0 and
henceh®(X,mH — r F) =0 orm’ > r'i. The former case happens if and onlynif< dr.

In the latter case, ldt be the line with slop@ and going through the poirit, m). Then
the integral point with the biggestcoordinate inL N {m/r > A} is (', m’). In concrete
terms,

m/zd{n;_irJ+(m—dr), ﬂ:\\n;:flrJ. (26)

As m'/r' > A (hence all higher cohomology @f’ H — ' F vanishes), this completes the
proof. O

Finally, we move on to the proof of the integral formula for the volume.
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Proof of 3.1. According to the volume formula of Section 2,
k-1

A i
vol(v) =1— nTm - ;hO(IPB,Ié (i)). (27)

In terms of the(r, m)-plane, we add the terms(X,mH — rF) on the line segment
m+r =k (m,r > 0) for fixed k. First we introduce some notation. Let

j):=(d+1)i—dk and 1:=ﬁ, (28)
Il(k):z{i‘d< ! ,<A}, (29)
k—i
Iz(k):z{i‘kg ’} (30)
k—i

In other words /1 (k) is the part of the line segment+ r = k (m, r > 0) that falls in the
region between the lines/r = d andm/r = 1 while I>(k) is the part falling in the region
between then-axis and the linen/r = A.

k-1 k-1
Y RO TG = Y RO(X,iH — (k—i)F)
i=0 i=0
=Y x((@Lid!]+j@)H = [ j()I]F)
I1(k)
+ Y x(((H = (k= i)F)). (31)
I(k)

Riemann—Roch theorem on 3-folds implies that
X(iH — (k—i)F) = %((il_-l—(k—i)F)s)+O(k2) (32)
and so
x(dLjO+j@)H = [ jDI]|F) = %(((d L]+ j)H — i1 F))
+O(k?). (33)

Therefore
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vol(v) = 1—IiTm <ki4 Z (((dLj(i)lJ +j)H — | jl] F)3>

11(k)

+ ki; > ((iH - k- i)F)3)>

Ir(k)

4 . L . 3
:1—Ii_m<—2((dL]lJ+]H_LJ_”F>>
© \ k k k

I1.(k)
+i‘z ‘H-(1 iFs (34)
k k k '
Ir(k)
Forn e Nandx € R one has
1
x——|nx]| < -
n n

As j(i)/k = (d+ 1)i/k — d, this then implies
(4 i — i 3
vol(v) = 1—lim . > <<(dl+1)<(d+l); —d)H—l((d—l—l); —d)F) )
AT

A5 (- (-5)))

—1-4 71<(((dl +1)((d+Dr —d))H —1(d + Dr —d)F)* ) dr

_d_
d+1

1
+f((t17—(1—t)F)3)dt . O (35)
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