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Introduction

Lyapunov exponents are characteristic numbers describing the behaviour of a cocycle
over a dynamical system. If the cocycle satisfies an integrability property, Oseledets
theorem states that there is a decomposition of the underlying vector bundle such that
the norm of vectors in each component grows with different speed along the flow. The
different possible growth rates are called Lyapunov exponents.

An interesting instance of a dynamical system is given by playing billiard on tables of
polygonal shape. Lyapunov exponents describe the diffusion rate of the trajectories
of the ball. Even in this special case, Lyapunov exponents are very hard to compute
using standard ergodic theoretic tools. In a surprising way, algebraic geometry came
into play and allowed to actually sometimes compute Lyapunov exponents associated
to billiards. The first important brick of the bridge between Lyapunov exponent and
algebraic geometry is given by flat surfaces. Trajectories in a polygonal billiard table
can be identified with geodesics with respect to the flat metric canonically defined on
the Riemann surface obtained by gluing the sides of the polygon. Such a flat metric on
a Riemann surface can be in turn identified with an abelian differential, i.e. a global
holomorphic 1-form. The set of flat surfaces of genus g can be made into an algebraic
moduli space, known as Hodge bundle ΩMg. On the strata of this moduli space given by
fixing the partition defined by the zeroes of the differentials, there is a natural probability
measure, called Masur-Veech volume. The natural SL2(R) action on this space given by
sheering the polygon is ergodic and by the important result of Eskin and Mirzakhani
orbit closures with respect to this action have an easy description is special coordinates.
These orbit closures are called affine invariant submanifolds of the Hodge bundle. By a
result of Filip, affine invariant submanifolds are even algebraic. Since affine invariant
submanifolds describe families of Riemann surfaces, there is a canonical weight one
variation of Hodge structures over them given by the flat vector bundle whose fiber over
a Riemann surface X is the cohomology H1(X,C). It is a remarkable result that the
Lyapunov exponents given as diffusion-rates of trajectories on a billiard given by a flat
surface (X,ω) are the same as the ones defined by the asymptotic growth rate of the
Hodge norm of vectors in the variation of Hodge structures over the flow in the affine
invariant manifold SL2(R)(X,ω). It is at this point that algebraic geometry became
handy. It is in [EKZ11] where Eskin, Kontsevich and Zorich proved that the sum of
positive Lyapunov exponents of the Kontsevich-Zorich cocycle over an affine invariant
manifold can be computed by computing the normalized degree of the Hodge bundle
restricted to the affine invariant manifold. The surprising fact is that numbers defined
only via a dynamical system approach that has no reason to be rational, turn out to be
indeed the degree of a vector bundle. They moreover related Lyapunov exponents to
other interesting invariants like the Masur-Veech volume of strata of abelian differentials
and the Siegel-Veech constants.
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Introduction

Starting from billiards, algebraic geometry was used to investigate Lyapunov exponent
in more general settings. For example, Kappes and Möller in [KM16] proved that a
result analogous to the one of [EKZ11] was true for weight one variations of Hodge
structures over ball quotients. This result allowed them to prove some results about
commensurability questions for lattices. Later, Filip [Fil14] proved a similar result
in the case of variations of Hodge structures given by one dimensional families of K3
surfaces. Variations of Hodge structures are a special case of flat vector bundles that
are characterized by the existence of a special filtration and a compatible Hodge norm.
However Lyapunov exponent can be defined for a general flat vector bundle. Indeed a flat
vector defines a cocycle given by parallel transport over the geodesic flow. In [EKMZ18]
Eskin, Kontsevich, Möller and Zorich proved that for a general flat vector bundle the
sum of the first k Lyapunov exponents is bounded from below by the normalized degree
of any rank k holomorphic subbundle of the flat bundle.

In the first part of this thesis we investigate Lyapunov exponents for general flat vector
bundles over Riemann surfaces by refining the main result of [EKMZ18] and we describe
properties of Lyapunov exponents on special loci of the moduli space of flat vector bundles.
In the second part of the thesis we show how the knowledge of Lyapunov exponent over
a sporadic Teichmüller curve can be used to compute the algebraic equation of the
associated universal family of curves.

In Chapter 1 we first of all recall Riemann-Hilbert and Simpson correspondences which
define an equivalence of categories between flat vector bundles over a Riemann surface C,
reductive representations of the fundamental group of C and polystable Higgs bundles
over C with vanishing Chern classes. These correspondences, that also induce an
homeomorphism of the corresponding moduli spaces, will allow us to investigate Lyapunov
exponents as functions on these moduli spaces. The moduli space of representations is
called Betti moduli space or character variety, while the moduli space of flat bundles
is called de Rham moduli space. In rank 2, the projective structures point of view
will be useful to retrieve additional information. The main results of the chapter are a
generalization of the result of [EKMZ18].

Theorem (Theorem 1.7.13). Let V be a holomorphic flat bundle over a hyperbolic
Riemann surface C = C \∆. For any holomorphic subbundle E ⊂ V of rank k, then it
holds

k∑

i=1

λi ≥
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u)

for almost any x ∈ C and Lebesgue almost any u ∈ ∧k V∨x . The error term is defined as

ErrE(u) = 4π lim
T→∞

1

T

∫ T

0

]{s−1
E (keru) ∩Dt}

vol(Dt)
dt.

Here we denoted by degpar(Ξh(E)) the parabolic degree of the metric extension of E, by
sE : H→ P(

∧k Vx) the holomorphic classifying map defining E and by Dt the hyperbolic
ball of radius t in the hyperbolic plane whose center is a lift of x.

vi



Introduction

The proof of the above theorem generalizes to variation of Hodge structures of weight
one over ball quotients or to the canonical variation of Hodge structures of weight one
over affine invariant submanifolds of the Hodge bundle.

If the base curve is compact, we can even prove the following.

Theorem (Theorem 1.8.1). If the Riemann surface C is compact, the above inequality
is an equality.

These results can be seen as a generalization of the main result of [DD15], where Deroin
and Dujardin defined Lyapunov exponents of holonomies of projective structures in the
context of the Brownian motion flow and related them to the covering degree of the
associated developing map. Moreover, the above results can also be compared to the
main result of [DD17a], in which Daniel and Deroin get a similar equality in the context
of the Brownian motion flow over a Kähler manifold. They prove that the sum of the
first Lyapunov exponents is the same as the sum of a normalized degree and a dynamical
degree. As a corollary we get that the error term ErrE(u) defined above, which has the
same shape as the covering degree defined in [DD15], is the same as the dynamical degree
defined in [DD17a].

Lyapunov exponents are not the only invariants on character varieties. We will recall
the description of other invariants like the Toledo invariant, which is defined for repre-
sentations into Lie groups of Hermitian type, or the critical exponent, which is defined
for representation in SLn(R). Other invariants like the entropy or the minimal area are
tightly related to the critical exponent, especially in the Hitchin components, where
they satisfy similar bounds and the attainment of the bound characterizes symmetric
powers of Fuchsian representations ([PS17]). With the support of computer experiment,
we conjecture that the top Lyapunov exponent satisfy similar bounds as the critical
exponent. The relation between Lyapunov exponents and the other cited invariants is
still only speculation, but the geometric Oseledets theorem seems to help toward this
direction. The main difference is given by the fact that Lyapunov exponents are naturally
defined on the de Rham moduli space, since they depend on the complex structure of
the base Riemann surface, while the other cited invariants are naturally defined on the
character variety, since they depend only on the representation of the fundamental group.

We then focus on the properties of Lyapunov exponents on special loci of the de Rham
moduli space. We recall the existence of a stratification given by Harder-Narasimhan
type, called Shatz stratification. Via the identification of the maximal stratum with the
oper locus, we get an explicit lower bound of the Lyapunov exponents on this stratum.
Moreover, using a recent result [DF18], we can prove that the top Lyapunov exponent
function is unbounded on the maximal Shatz stratum.

Theorem (Theorem 1.9.2). The top Lyapunov exponent function is unbounded on the
maximal Shatz stratum, the oper locus, with logarithmic growth near the boundary of the
character variety.

The next interesting locus to consider is the set of flat bundles underlying variations of
Hodge structures. We prove a slight generalization of the results of [EKZ11] and [Fil14]
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Introduction

using a general condition for the vanishing of the error term. We also show that the
triviality of the Lyapunov spectrum implies that the variation of Hodge structures is
unitary and that for positive weight variations of Hodge structures the first term of the
Hodge filtration induced a non-trivial lower bound for the sum of the first exponents.

We finally concentrate on the rank two de Rham moduli space and describe the Shatz
stratification and the variations of Hodge structures loci more in detail. By identifying
the oper locus with the set of holonomies of projective structures inducing the same
complex structure, we give a generalization of the main result of [DD17b].

In Chapter 2, we compute the algebraic equation of the universal family over one of the
two known sporadic Teichmüller curves, the Kenyon-Smillie (2, 3, 4)-Teichmüller curve.
This is a joint work with André Kappes and appeared ad [CK17].

Teichmüller curves are projections toMg of closed SL2(R)-orbits in the Hodge bundle and
so they are closed algebraic curves in the moduli space of curves. It was proven by Möller
in [Möl06b] that Teichmüller curves, like Shimura curves, can be characterize by the
special shape of their variation of Hodge structures. The Kenyon-Smillie Teichmüller curve
parametrizes all affine deformations (St, ωt) of the translation surface (S, ω) ∈ ΩM3(3, 1)
that is obtained from unfolding a Euclidean triangle with angles (2π

9
, 3π

9
, 4π

9
). It was

discovered by Kenyon and Smillie [KS00], who proved that (S, ω) is a Veech surface with
Veech group equal to the triangle group ∆(9,∞,∞). The translation surface (S, ω) is
the order 9 orbifold point of its associated Teichmüller curve, which is uniformized by
H /∆(9,∞,∞).

Theorem (Theorem 2.1.1). The universal family over the complement of the orbifold
point of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve is given by the family of plane
quartics satisfying the equation

X4 + t(X4 − 3X3Y + 6X3Z − 3X2Y 2 − 6X2Y Z + 6X2Z2 + 4XY 3

−6XY 2Z − 6XY Z2 +XZ3 + 3Y 4 + 3Y 3Z) = 0

where t varies in P1−{0, 1,∞}.
The triple zero of the differential ωt is the point pt = (0 : 0 : 1) ∈ St and the simple zero
is the point qt = (0 : 1 : −1) ∈ St.

As above, the study of the variation of Hodge structures over the Teicmüller curve and of
its Harder-Narasimhan filtration are central. Indeed, the characterization of Teichmüller
curves via their associated variation of Hodge structure proved in [Möl06b] and the
description of the associated Harder-Narasimhan type computed in [YZ13] are one of the
main used tools.

Since in this case we are dealing with a family of hypersurfaces, we can use the Griffiths-
Dwork method to compute the Picard-Fuchs equations associated to this family.

Proposition (Proposition 2.1.3). The periods of ωt are solutions of the following differ-
ential equation:

16

81t(t− 1)
y +

17t− 8

9t(t− 1)
y′ + y′′ = 0.
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Introduction

The local system defined by the solution of this differential equation is the one corre-
sponding to an irreducible rank 2 subbundle of the variation of Hodge structure of the
Teichmüller curve. By relating the local exponents of the above differential equation to
the order of vanishing of the Higgs field associated to the variation of Hodge structures,
we prove that the local system defined by the above equation is the one corresponding to
the uniformizing representation of the Teichmüller curve. Hence, by the characterization
of Teichmüller curves of [Möl06b], we independently reproved that the equation that we
computed indeed is the one of the universal family over a Teichmüller curve.

Acknowledgements Firstly, I would like to thank my advisor Martin Möller. Since the
beginning he was always there to help me whenever I needed, always motivating me and
providing useful insights with his vast knowledge and incredible intuition. I am also
grateful to him for encouraging me to attend a lot of interesting conferences and schools,
where I met a lot of amazing people and learned cool mathematics. I will always also
remember the intense hikes and the fun ski lessons. I am also very grateful to Anna
Wienhard for agreeing to co-referee this thesis. I would also like to thank Jakob Stix for
the valuable discussions and his always sharp insights on every problem. Thanks also to
Jürgen Wolfart, who always kindly and patiently helped me with any questions I had on
Fuchsian groups and on many other topics.

A special thanks goes to André Kappes, my coauthor and the person who helped me the
most at the begininning of my PhD. Thanks also to all the current and former members
of the workgroup. In particular to Martin Lüdtke, my office mate who has infinite
patience and listens always to all my mathematical and non-mathematical problems,
to Matthias Nickel, who is always there to explain me interesting diophantine math
and telling me equally interesting anecdotes, and to Jonathan Zachhuber, who is an
invaluable PhD brother always open to discuss and help. I would like also to thank
David Torres for all the amazing time we shared, especially during conferences, and the
support he could provide, together with Şevda Kurul, during sad times. Thanks also
to Nithi Rungtanapirom for all the intense conversations and the nice game evenings.
Thanks to Max Bieri and Markus Rennig for being always available to share a sport time
and a following beer time. Thanks to Adrian Zorbach for all the conversations about
crazy math and non-math theories. Thanks to Rosemarie Martienssen, Quentin Gendron,
Alejandro Soto, Ralf Lehnert, Kolja Hept for all the wonderful time in Frankfurt.

I would like to thank the most important person of my life, my wife Arianna. Her
constant support and love was essential in all these years.

At last, thank you mum, without you I could have never done it. Your sweetness and
kindness will always be remembered.

ix





1 Lyapunov exponents on character varieties

Lyapunov exponents define an invariant of a flat vector bundle over a Riemann surface.
They measure the asymptotic behavior of parallel transport over the geodesic flow.
Starting from the work of [EKZ11], algebraic geometry started to come into play into the
computation of Lyapunov exponents for flat bundles over affine invariant submanifolds
of the Hodge bundle over the moduli space of curves. In [EKMZ18] it was investigated
the relation between Lyapunov exponents and degrees of holomorphic subbundles of a
general flat vector bundle. In this chapter we study Lyapunov exponents as invariants
on the moduli space of flat vector bundles by refining the main result of [EKMZ18] and
investigating the behavior of Lyapunov exponents on special subsets of the moduli space.

In Section 1.1 we state Oseledets multiplicative ergodic theorem and define Lyapunov
exponents for flat vector bundles.

The set of flat vector bundles over C can be made into an algebraic variety called
the de Rham moduli space. In Section 1.2 we recall Riemann-Hilbert and Simpson
correspondences, which give an equivalence of categories and a homeomorphism between
the de Rham moduli space, the Betti moduli space of reductive representations of the
fundamental group of C and the Hitchin moduli space of polystable Higgs bundles with
vanishing Chern classes.

In Section 1.3 we recall the definition of two stratifications on the de Rham moduli space.
In particular we focus on the Shatz stratification, which is given by Harder-Narasimhan
type, and describe the minimal and maximal strata.

In Section 1.4 we highlight the Betti point of view in rank two. We introduce projective
structures and focus on representations given as holonomies of projective structures.

We then go more deeply into the description of special loci in rank two in Section 1.5.
In particular in Proposition 1.5.1 we identify the oper locus, which is the same as the
maximal Shatz stratum, with the set of holonomies of projective structures inducing the
same complex structure.

In a more general situation, if a flat vector bundle corresponds to a representation into
a reductive Lie group G, Riemann-Hilbert and Simpson correspondences still hold and
if G has special properties, it is possible to define special invariants. We define them
in Section 1.6 and recall some of their properties on special components. Using the
geometric Oseledets theorem we define Lyapunov exponents for general G-flat bundles
and we speculate a relation between them and the other described invariants.

In Section 1.7 we prove the main inequality of Theorem 1.7.13, which is a refinement of the
result of [EKMZ18]. It describes the error term given by the difference between Lyapunov
exponents and normalized degrees of holomorphic subbundles. The proof of the theorem

1



1 Lyapunov exponents on character varieties

generalizes to variation of Hodge structures of weight one over ball quotients or to the
canonical variation of Hodge structures of weight one over affine invariant submanifolds
of the Hodge bundle over the moduli space of Riemann surfaces. In Proposition 1.7.18,
we also derive a general condition to ensure that the error term is zero.

In Section 1.8 we present Theorem 1.8.1, which states that if the base curve is compact
the main inequality is actually an equality. As a corollary we get that, in the case of
compact base curve, the error term that we get is the same as the dynamical degree
defined in [DD17a] (Corollary 1.8.9). Indeed in [DD17a], Daniel and Deroin provide a
result analogous to ours in the context of Brownian motion, where the error term is
given by a dynamical degree. It is defined as the intersection of the class induced by E
with a harmonic current. Notice that the error term can in principle be approximated
with computer experiments, while the dynamical degree is harder to actually compute in
experiments since it is defined in terms of a harmonic measure.

Using the above results we investigate how the Lyapunov exponent function behaves on
special loci of the de Rham moduli space.

In Section 1.9 we describe in Proposition 1.9.1 a lower bound for the Lyapunov exponent
functions on maximal Shatz strata, which we identify with the oper loci. We then
use the main result of the recent work [DF18] to show in Theorem 1.9.2 that the top
Lyapunov exponent function is unbounded on the oper loci with logarithmic growth near
the boundary of the character variety.

In Section 1.10 we conjecture, with the support of computer experiments, that the top
Lyapunov exponent function on the Hitchin components is bounded from below by
the value of the top Lyapunov exponent of the appropriate symmetric power of the
uniformizing representation of C. This would be a result analogous to the one of [PS17]
about the critical exponent.

In Section 1.11 we then focus on other special flat bundles, namely the ones defining
a variation of Hodge structures. Using the above cited general criterion for ensuring
the vanishing of the error term, we reprove slightly more general versions of the original
results of [EKZ11] and [Fil14] about weight one and real weight two variations of Hodge
structures. For a general variation of Hodge structures V , we prove in Proposition 1.11.6
that the Lyapunov spectrum is trivial if and only if V is unitary and we show that if the
weight is positive we get a non-trivial bound on the sum of the first rk(Vn,0)-exponents
(Corollary 1.11.7).

We finally focus on the de Rham moduli space in rank two. In Section 1.12 we first of all
prove the continuity of the top Lyapunov exponent function and we show that the locus
of zero exponent is the locus of elementary representations. As in the proof of the same
results in [DD15] in the context of Brownian motion, we use that the Lyapunov exponent
with respect to the geodesic flow is the same as the one with respect to the random
product on the image of the representation. We finally generalize for a compact base
curve the main result of [DD17b], where it was described the top Lyapunov exponent
function on the holonomies of projective structures giving the same complex structure.
By identifying this set with the oper locus, we notice in Proposition 1.12.4 that the result
of [DD17b] is a special case for the maximal Shatz strata.

2



1.1 Lyapunov exponents

1.1 Lyapunov exponents

We want to define the Lyapunov exponents associated to a flat vector bundle over a
hyperbolic Riemann surface C of finite area.

We first of all recall Oseledets multiplicative ergodic theorem and the definition of
Lyapunov exponents for a cocycle over an ergodic flow.

Theorem/Definition 1.1.1. Let gt : (M,µ)→ (M,µ) be an ergodic flow on a space M
with finite measure µ. Suppose that the action lifts equivariantly to a linear flow Gt on
some measurable real bundle V on M . Suppose there exists a (not equivariant) norm ‖ · ‖
on V such that the functions

x 7→ sup
t∈[0,1]

log+ ‖Gt‖x, x 7→ sup
t∈[0,1]

log+ ‖G1−t‖gt(x) (1.1)

are in L1(M,µ) (we call such a norm integrable). Then there exist real constants
λ1 ≥ · · · ≥ λn and a decomposition

V =
n⊕

i=1

Vλi

by measurable real vector bundles such that for a.a. x ∈M and all v ∈ (Vλi)x − {0}, it
holds

λi = lim
t→±∞

1

t
log ‖Gt(v)‖.

The set of values λi, repeated with multiplicity dimVλi, is called the set of Lyapunov
exponents or Lyapunov spectrum of (M,µ, gt,V).

The case we are interested in is when the space M is the unit tangent bundle T 1(C) of a
hyperbolic curve C equipped with the measure induced by the hyperbolic metric with
constant negative curvature −4 (we keep the same convention as in [EKMZ18]). The
geodesic flow gt is then ergodic and we can lift it to a flat vector bundle (V,∇) using
parallel transport. A flat vector bundle over C is a A0

C-vector bundle V , i.e. a smooth
complex bundle, equipped with a connection ∇ : V → V ⊗A1

C with vanishing curvature
∇2 = 0.

Remark 1.1.2. The Lyapunov spectrum is symmetric in this case. This follows since the
negative time geodesic flow, which has negative Lyapunov spectrum, is conjugate to the
positive time flow (because of the SL2(R)-action on H). Moreover, if the vector bundle
V is complex, it is possible to show that the Oseledets subvector bundles are complex
subbundles of V . In this case we then consider only half of the real Lyapunov spectrum,
forgetting about the duplication phenomen given by the complex structure.

We still need to define an integrable norm on the flat bundle (V,∇). We defined the
constant norm as the pullback to T 1(C) of the parallel transport of any norm over the
fiber of some base point c ∈ C to a Dirichlet fundamental domain for Γ on H. In particular
this norm is not continuous across the boundary of the fundamental domain. We say

3



1 Lyapunov exponents on character varieties

that (V,∇) has non-expanding cusp monodromies if the eigenvalues of the holonomy
matrices hol∇(γ) have absolute value one, for every simple loop γ around a cusp. We
recall a result which ensures us that the constant norm is integrable.

Theorem 1.1.3 ([EKMZ18]). The constant norm over (V,∇) is integrable if and only
if the associated local system has non-expanding cusp monodromies.

Note that for any two integrable norms on (V,∇), the Lyapunov filtrations and the
Lyapunov spectra coincide (see [KM16, Lemma 2.6]).

Remark 1.1.4. The constant norm can be used to numerically compute Lyapunov expo-
nents associated to (V,∇) when a coding for the geodesic flow on H /Γ is available. If we
denote by γn ∈ Γ the sequence of elements corresponding to the sequence of sides of the
fundamental domain crossed by a generic geodesic, then by definition of constant norm
the Lyapunov exponents are given as

λi = lim
n→∞

1

n
log(µi(n)),

where µi(n) are the eigenvalues of the matrix

hol∇(γn) · · · · · hol∇(γ1).

1.2 De Rham, Betti and Hitchin moduli spaces for compact
curves

The set of flat vector bundles can be made into an algebraic variety called de Rham
moduli space. Since we are interested in Lyapunov exponents as invariants on this moduli
space, we recall its definition and its relation to other two moduli spaces, the Betti
and the Hitchin moduli spaces. We will also recall the definition of special flat bundles,
called variations of Hodge structures, and their Higgs bundles version called system of
Hodge bundles. When we speak about moduli spaces, we are always assuming that the
base Riemann surface is compact, since we do not want to deal here with representation
varieties with fixed parabolic weights at the cusps. Let then C be a compact curve with
negative Euler characteristic. The universal covering of C is the upper half-plane H.

1.2.1 De Rham moduli space First of all we consider the de Rham moduli space
M(n)

DR(C) defined as the moduli space of semisimple flat vector bundles (V,∇) of rank n
over C with trivial determinant bundle modulo the action of the complex gauge group. A
flat vector bundle can be identified with a holomorphic flat bundle, namely a holomorphic
bundle V together with a flat holomorphic connection ∇ : V → V ⊗Ω1

C . Here we denoted
by Ω1

C = KC the canonical bundle of holomorphic one forms over C. The identification
is given by Koszul-Malgrange theorem (see [RR15, p. 2.2]), which asserts that the data
of a C∞C -vector bundle V together with an operator ∂V : V → V ⊗A0,1

C satisfying ∂2

V = 0
is the same data as the one of a holomorphic bundle. We can then associate to a flat

4



1.2 De Rham, Betti and Hitchin moduli spaces for compact curves

vector bundle (V,∇) the holomorphic structure ∂V := ∇0,1 : V → V ⊗A0,1
C on V and a

holomorphic connection ∇1,0 induced on the associate holomorphic bundle V = ker ∂V .
Since we are working over a Riemann surface, the condition for a holomorphic connection
to be flat is trivial.

1.2.2 Betti moduli space The second moduli space that we are interested in is the
Betti moduli space

M(n)
B := Hom(π1(C), SLn(C))// SLn(C),

defined as the GIT-quotient under the conjugation action of the affine variety given by
the space of representations. The Betti moduli space is also called character variety, since
the regular functions are given by the trace functions. This moduli space is an irreducible
affine variety of complex dimension (n2 − 1)(2g − 2). It contains a Zariski open set of
simple representations where the quotient is given by the geometric quotient. Points of
M(n)

B are in one to one correspondence with conjugacy class of semisimple representations
and every SLn(C)-orbit contains a semisimple representation in its closure.

1.2.3 Hitchin moduli space The third moduli space we want to talk about is the
Hitchin moduli spaceM(n)

H (C) defined as the moduli space of rank n polystable Higgs
bundle over C with trivial determinat bundle and with vanishing Chern classes. Two
Higgs bundles are identified in this moduli space if they induce the same graded object
associated to the Seshadri fitration. A Higgs bundle over C is a pair (V ,Φ) where V is
holomorphic vector bundle over C and Φ is a global holomorphic section of KC ⊗ EndV .

1.2.4 Riemann-Hilbert and Simpson correspondences All of the three described
moduli spaces are homeomorphic (see [Sim94a], [Sim94b]). The Betti and the de Rham
moduli space are even isomorphic as complex spaces but the isomorphism is not algebraic.
We now want to describe the homeomorphisms between them.

The classical version of the Riemann-Hilbert correspondence defines the map between
the Betti and the de Rham moduli spaces. First of all, recall that a representation
ρ : π1(C)→ GLn(C) is the same as a local system Vρ over C, namely a locally constant
sheaf defined as the sheaf of equivariant continuous functions

Vρ(U) := {f : π−1(U)→ Cn : s(γx) = ρ(γ)f(x), ∀γ ∈ π1(C)}

for any open U ⊆ C, where π : H → C is the universal covering map. The Riemann-
Hilbert correspondence associates to the representation ρ the holomorphic flat bundle
Vρ := Vρ ⊗OC equipped with the flat Gauss-Manin connection locally defined by

∇(s⊗ f) := s⊗ d(f)

where d(f) is the derivative of the local holomorphic function f (this is a well-defined
connection since the cocycle of a local system is a constant function, so its derivative is
zero). Equivalently, the total space of this holomorphic vector bundle is defined by

Vρ = H×Cn / ∼, (z, v) ∼ (γ(z), ρ(γ)v), γ ∈ π1(C).

5



1 Lyapunov exponents on character varieties

Vice versa, given a holomorphic flat vector bundle (V ,∇), the associated local system is
given by the sheaf of flat sections.

We want now to describe Simpson correspondence, which defines the map between the
de Rham and Hitchin moduli spaces. The key idea is to factor through the space of
harmonic bundles, which are C∞-vector bundles equipped with a harmonic metric. A
harmonic metric on a rank n vector bundle V is the same as a map to the space of metrics
on V

C → GL(n)/U(n)

that minimizes the energy functional. Corlette proved that each semisimple flat vector
bundle and each polystable Higgs bundle with vanishing Chern classes admit a unique
(up to scalar) harmonic metric (see [Cor88]). Using this fact, we recall the explicit map
defined in [Sim92].

Given a flat vector bundle (V,∇) equipped with its harmonic metric, define the Higgs
bundle (V , ∂V ,Φ) as the holomorphic vector bundle (V , ∂V) together with the Higgs field
Φ defined as

∂V :=
∇0,1 + δ′′

2
, Φ =

∇1,0 − δ′
2

.

The connections ∇1,0 + δ′′ and ∇0,1 + δ′ are the unique ones preserving the unique
harmonic metric. Conversely, given a Higgs bundle (V , ∂V ,Φ), the associated flat vector
bundle (V ,∇) is given by

∇ := ∇1,0 +∇0,1, ∇1,0 = ∂ + Φ, ∇0,1 = Φ + ∂V

where ∂ + ∂V is the harmonic metric connection and Φ is the metric adjoint of Φ.

1.2.5 Variation of Hodge structures and system of Hodge bundles We recall the
definition of variation of Hodge structures. They are special holomorphic flat bundles
arising for example from the variation of the cohomology of families of algebraic varieties.

Definition 1.2.1. A complex variation of Hodge structures of weight k over C is a
holomorphic flat vector bundle (V ,∇) over C together with a holomorphic filtration

F k+1 = 0 ⊂ · · · ⊂ F 0 = V

which satisfies the Griffiths transversality condition

∇ : F p → F p−1 ⊗ Ω1
C

and such that furthermore there exists a ∇-flat hermitian complex form H on V , which
is positive definite on F i/F i+1 for i even and negative definite for i odd.

Via Simpson correspondence, variations of Hodge structures correspond to stable systems
of Hodge bundles ([Sim88]).

Definition 1.2.2. A system of Hodge bundles is a Higgs bundle (V ,Φ) together with a
decomposition V = ⊕Vp,q, such that Φ : Vp,q → Vp−1,q+1 ⊗KC .
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1.3 De Rham moduli space and Shatz stratification

Via Simpson correspondence a variation of Hodge structures is associated to the semistable
system of Hodge bundles given by the graded object associated to the Hodge filtration
equipped with the Higgs field defined by the graded pieces of the flat connection. In this
case the harmonic metric is the Hodge metric coming from the hermitian form H. System
of Hodge bundles can be also characterized ([Sim92]) as fixed point of the C∗-action on
M(n)

H (C) given by t · (V ,Φ) = (V , t · Φ) for t ∈ C∗.

1.3 De Rham moduli space and Shatz stratification

Since we will relate Lyapunov exponents to degrees of holomorphic subbundles of holo-
morphic flat bundles, we recall here the existence of a stratification of the de Rham
moduli space given by Harder-Narasimhan type, called Shatz stratification. We then
describe more in detail the minimal stratum containing the unitary representations and
the maximal stratum, which we identify with the oper locus. Finally we recall the
construction of another stratification defined by the C∗-action on the Hitchin bundle
moduli space. The minimal and maximal strata of these two stratifications coincide.

1.3.1 Harder-Narasimhan filtration We recall some basic definitions about Harder-
Narasimhan filtrations and maximal degree subbundles following [HN74].

Definition 1.3.1. Let V be a holomorphic vector bundle over C of rank n. The degree
deg(V) of V is the first Chern class of V, or equivalently the degree of the determinant
bundle det(V). The slope µ(V) of V is defined as the quotient of the degree and the rank

µ(V) = deg(V)/ rk(V).

Notice that both degree and rank are additive functors.

Definition 1.3.2. A vector bundle V is (semi)stable if, for every holomorphic subbundle
E ⊂ V , it holds µ(E) < (≤)µ(V), or equivalently µ(V) < (≤)µ(V/E).

Remark 1.3.3. The two following easy statements are useful for computations.

1. Let f : V1 → V2 be a non-zero holomorphic map between two holomorphic vector
bundles of the same rank. Then µ(V2) ≥ µ(V1). Indeed f induces a nonzero
holomorphic section of the line bundle det(V2)⊗det(V1)∨, which hence has positive
degree since we are working over a curve.

2. Let f : V1 → V2 be a non-zero holomorphic map between two holomorphic
semistable vector bundles. Then µ(V2) ≥ µ(V1). Indeed by semistability of V1 first
and of V2 after we have µ(V1) ≤ µ(Im (f)) ≤ µ(V2).

We want now to define the Harder-Narasimhan filtration of a vector bundle.

If V is not semistable, we say that E ⊂ V is maximal if E is semistable and for every E ′
such that E ( E ′ ⊂ V, it holds µ(E) > µ(E ′). In other words, E is maximal if it is the

7



1 Lyapunov exponents on character varieties

semistable subbundle with maximal slope. One can show that it exists and it is unique.
One can moreover show that E is maximal if and only if E is semistable and for every
Q ⊂ V/E , it holds µ(Q) < µ(E).

Definition 1.3.4. The Harder-Narashiman filtration of a holomorphic vector bundle V
of rank n is a filtration by holomorphic subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vl = V

such that Vi/Vi−1 is semistable and µ(Vi/Vi−1) > µ(Vi+1/Vi). This filtration always
exists and the associated graded object Gr(V) := ⊕li=1Vi/Vi−1 is uniquely determined by
the isomorphism class of V .

We call the collection
(µ1, . . . , µn), µi = µ(Vi/Vi−1)

of slopes (possibily repeated depending on the rank of Vi/Vi−1) the Harder-Narashiman
type of V .

For example, if V is semistable, the Harder-Narashiman type of V is simply given by
(µ1 = µ(V), . . . , µn = µ(V)).

Remark 1.3.5. The bundles Vi appearing in the Harder-Narasimhan filtration satisfy
µ(Vi) > µ(Vi+1). Moreover, each one of the following conditions can be substituted to
the second condition in the definition of Harder-Narasimhan filtration:

1. µ(Vi/Vi−1) > µ(Vi+1/Vi).

2. Vi/Vi−1 is maximal in V/Vi−1.

3. µi is the minimal slope among the slopes of quotients of Vi.

In particular V1 is the sub-line bundle with the maximal slope among all subbundles of
V . For the proof of the previous statements see [HN74].

1.3.2 Shatz stratification of M(n)
DR(C) We want to state a central theorem about the

upper-semicontinuity of the Harder-Narashiman type. There is a partial ordering on
vectors given by Harder-Narashiman types, namely

(µ1, . . . , µn) ≤ (ν1, . . . , νn)⇐⇒
k∑

i=1

µi ≤
k∑

i=1

νi for all k = 1, . . . , n.

One can also visualize this partial ordering by drawing a semi-polygon in the plane that
has vertices with coordinates (rk(Vi), deg(Vi)). The partial ordering is then given by
checking if a semi-poligon is above an other one.

Now we state the main theorem by Atiyah and Bott, which was proven in the general
case of higher dimensional base space by Shatz.
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1.3 De Rham moduli space and Shatz stratification

Theorem 1.3.6 ([AB83],[Sha77]). The Harder-Narasimhan type defines an upper semi-
continuous function, meaning that if C~µ is the space of vector bundles with Harder-
Narasimhan type ~µ, then

C~µ ⊆
⋃

~ν≥~µ

C~ν .

In particular there is a stratification ofM(n)
DR given by the Harder-Narashiman type called

Shatz stratification.

We will now discuss more in detail the minimal and the maximal Shatz strata.

1.3.3 Minimal Shatz stratum The minimal stratum is easy to describe, since it is
clearly given by the locus of semistable bundles. Note that the degree of every vector
bundle inM(n)

DR(C) is zero, since this is the moduli space of flat vector bundles. Hence
the Harder-Narashiman type of a semistable bundle is (µ1 = 0, . . . , µn = 0). The minimal
stratum is an open dense set. The subset of semistable but not stable bundles is the closed
subset of the minimal stratum corresponding to the subset of reducible representations
inM(n)

B .
Remark 1.3.7. The locus of stable bundles is isomorphic to the tangent bundle of the
space of stable holomorphic vector bundles. Indeed the space of holomorphic connections
on a fixed simple vector bundle V is given by

H0(End(V)⊗KC) ∼= H1(End(V)∨) ∼= H1(End(V))

which is the tangent space to the space of stable holomorphic vector bundles (see [NS65]).

Using the last remark, it is easy to see that the open subset of the minimal stratum given
by stable bundles is contained into the smooth locus ofM(n)

DR(C). Indeed if V is stable, it
is easy to see that it is also simple, i.e. H0(End(V)) = 0. Note that here End(V) means
the endomorphism of V that are the identity on the determinant bundle, since we are
only dealing with the category of vector bundles with trivial determinant. Using the
Riemann-Roch theorem, we can then compute the dimension of the tangent space of
M(n)

DR(C) at simple flat bundles

2h1(End(V)) = 2h0(End(V)) + 2 rk(End(V))(g − 1) = 2(n2 − 1)(g − 1)

which is equal to the dimension ofM(n)
DR(C).

Thanks to the theorem by Narasimhan and Seshadri we know what is the closed subset
of the stable locus inM(n)

DR(C) corresponding to the unitary locus ofM(n)
B .

Theorem 1.3.8 ([NS65]). The locus of unitary representations inM(n)
B corresponds to

the locus of flat vector bundles (V ,∇) ∈M(n)
DR(C) where V is stable and ∇ is the harmonic

metric connection. This subset is a (n2 − 1)(g − 1)-dimensional closed subvariety of the
stable locus ofM(n)

DR(C).

In the Hitchin moduli space the unitary locus corresponds to the locus of Higgs bundles
with zero Higgs field.

9



1 Lyapunov exponents on character varieties

1.3.4 Maximal Shatz stratum: oper locus We want to describe the maximal locus
of the Shatz stratification, namely the locus where the flat vector bundles have maximal
Harder-Narashiman type. In order to do this, we have to introduce the notion of opers
and state their main properties. We will follow the survey [Wen15].

Definition 1.3.9. A SLn-oper is a rank n holomorphic vector bundle V with trivial
determinant bundle, equipped with a flat holomorphic connection ∇ and a filtration by
holomorphic subbundles

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V
such that

1. ∇(Vi) ⊆ Vi+1 ⊗KC ;
2. ∇ : Vi/Vi−1 → Vi+1/Vi ⊗KC is an isomorphism.

Let us now define the oper locus Opn(C) ⊂ M(n)
DR(C) as the subset of the de Rham

moduli space of flat vector bundles admitting an oper structure. This definition makes
sense since the oper structure, i.e. the oper filtration, is unique for a fixed oper (V ,∇).
The uniqueness of the oper structure is a consequence of the following central proposition.

Proposition 1.3.10 ([Wen15]). Let (V ,∇) be a SLn-oper. The oper structure on V is
uniquely determined by the line bundle

V/Vn−1
∼= V1 ⊗K−(n−1)

C .

Moreover

(V/Vn−1)n ∼= K−n(n−1)/2
C and det(Vj) ∼= V/Vn−1 ⊗Knj−(j(j+1)/2)

C .

In particular the isomorphism class of V is fixed on every connected component of
Opn(C) and each component parametrizes the space of holomorphic connections on a
fixed holomorphic vector bundle. These components are classified by the choice of the line
bundle V/Vn−1 which is defined by the property (V/Vn−1)n ∼= K

−n(n−1)/2
X . Hence Opn(C)

has n2g connected components, which also corresponds to the number of ways of lifting
a monodromy representation in PSLn(C) to SLn(C) (see [Wen15, Remark 4.2]). Using
Proposition 1.3.10 one can also prove that if a holomorphic bundle has the structure of an
oper then it must be an irreducible flat vector bundle, or equivalently the representation
that it defines is simple ([Wen15, Prop. 4.8]).

We will see in the next section that there is only one variation of Hodge structures on
each connected component of the oper locus. It is given by the (n − 1)-th symmetric
power of the maximal Higgs one in rank 2 (see Proposition 1.3.15). The maximal Higgs
variation of Hodge structures in rank 2 corresponds to the uniformizing representation of
C.

We want now to parametrize the oper locus in such a way that it will be easy to see why
in rank 2 the oper locus corresponds to the set of holonomies of projective structures
inducing the same complex structure on C (see Proposition 1.5.1).
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1.3 De Rham moduli space and Shatz stratification

Consider the n-th order differential operator on H locally of the form

Dy = y(n) +Q2y
(n−2) + . . . Qny (1.2)

where Qj are pull-backs of local sections of KjC . This differential operator induces a short
exact sequence of C-modules

0→ V ϕ−→ K1−(n+1/2)
C

D−→ Kn+1/2
C → 0 (1.3)

and we say that the local system V is realized in K1−(n+1/2)
C . Clearly the space of all such

local systems is parametrized by the affine space modeled on
⊕n

j=2 H
0(C,KjC).

We can now state another characterization of opers.

Proposition 1.3.11 ([Wen15]). Let (V ,∇) be a flat vector bundle. Then (V ,∇) is an
oper if and only if its associated local system is realized in K1−(n+1/2)

C .
This characterization defines an isomorphism between each connected component of
Opn(C) and the affine space modeled on the Hitchin base

⊕n
j=2H

0(C,KjC). It follows
also that the dimension of Opn(C) is (n2 − 1)(g − 1).

We give now the explicit map between local systems realized in K1−(n+1/2)
C and opers

realizing the correspondence of the proposition above. Assume that we are given the
exact sequence (1.3) and let V := OC ⊗C V be the associated flat vector bundle. Define
the oper filtration by

Vn−k := {
n∑

i=1

fi ⊗ vi :
n∑

i=1

f
(j)
i ϕ(vi) = 0, j = 0, . . . , k − 1} for k = 1, . . . , n− 1, (1.4)

where f (j)
i is the j-th derivative of the local holomorphic function fi. We will see that the

construction (1.4) of the oper filtration is useful to relate opers and projective structures
in rank 2.

Let us finally recall the theorem stating that the oper locus is the maximal Shatz stratum.

Theorem 1.3.12 ([Wen15]). The maximal stratum ofM(n)
DR is the oper locus Opn(C).

The Harder-Narashiman filtration of an oper is the oper filtration itself and the Harder-
Narashiman type is given by

µi = µ(K(n+1)/2−i
C ) = (n+ 1− 2i)(g − 1).

By upper-semicontinuity, the oper locus is a closed embedded subset ofM(n)
DR.

The previous theorem is a consequence of the following proposition, which one can directly
use to compute the Harder-Narashiman type of an oper recursively.

Proposition 1.3.13 ([Wen15]). Let V be an unstable vector bundle with an irreducible
holomorphic connection and let (µ1 = µ(V1), . . . , µl = µ(V/Vl−1)) be its non repeated
Harder-Narashiman type. Then for each i = 1, . . . , l − 1,

µi − µi+1 ≤ 2g − 2.

Moreover equality holds if and only if V is an oper.

11



1 Lyapunov exponents on character varieties

1.3.5 Bialynicki-Birula stratification We describe another stratification ofM(n)
DR(C)

defined by using the C∗-action on the Hitchin moduli space.

Recall that a variation of Hodge structures inM(n)
DR(C) corresponds to a system of Hodge

bundles inM(n)
H (C), which is equivalent to be a fixed point of the C∗-action onM(n)

H (C).
Let us denote by

(M(n)
H (C))C

∗
=
⊔

α

Pα

the connected components decomposition of the fixed locus of the C∗-action. We recall
the construction of [Sim10], in which Simpson describes a limiting process that associates
to any point (V ,∇) ∈M(n)

DR(C) an element in (M(n)
H (C))C

∗ .

A Griffiths transverse filtration of (V ,∇) is a filtration

F k+1 = 0 ⊂ · · · ⊂ F 0 = V

which satisfies the Griffiths transversality condition

∇ : F p → F p−1 ⊗ Ω1
C .

Note that a variation of Hodge structures is simply a flat vector bundle admitting a
Griffith transverse filtration together with the Hodge metric. Associate to such (V ,∇, F •),
the graded Higgs bundle (GrF (V)=

⊕
p F

p/F p−1,∇gr). In general this Higgs bundle will
not be semistable, so it will not be a point ofM(n)

H (C). Clearly, if (V ,∇) is a variation
of Hodge structures, this associated Higgs bundle is stable and it is the Higgs bundle in
M(n)

H (C) corresponding to the point (V ,∇) ∈M(n)
DR(C) under Simspon’s correspondence.

Theorem 1.3.14 ([Sim10]). Let (V ,∇) ∈M(n)
DR(C). Then there exists a Griffith trans-

verse filtration such that its associated Higgs bundle is semistable, i.e. it is a system
of Hodge bundles. This associated Higgs bundle depends only on (V ,∇) and not on
the filtration. Moreover the Griffiths transverse filtration is unique if and only if the
associated graded Higgs bundle is stable.

Simpson proved that given (V ,∇), the associated system of Hodge bundles is the limit
point limt→0 t · (λ,V ,∇) in the space

MHod := {(λ,V ,∇), ∇ : V → V ⊗ Ω1
C , ∇(ae) = a∇(e) + λd(a)e}

where t · (λ,V ,∇) := (tλ,V , t∇).

Using Theorem 1.3.14 it is easy to show that there is only one variation of Hodge
structures on an each connected component of the oper locus.

Proposition 1.3.15. The only variation of Hodge structures on an each connected
component of the oper locus is given by the (n− 1)-th symmetric power of the maximal
Higgs one in rank 2. The maximal Higgs variation of Hodge structures in rank 2
corresponds to the uniformizing representation of C.
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1.3 De Rham moduli space and Shatz stratification

Proof. Let (V ,∇, {Vi}i=0,...,n) be an oper. By Proposition 1.3.10 the holomorphic vector
bundle V is fixed on each connected component of the oper locus. Moreover the flat
bundle (V ,∇) is irreducible. Let now

F k+1 = 0 ⊂ · · · ⊂ F 0 = V

be the filtration associated to a VHS structure on V. Since (V ,∇) is irreducible, the
variation of Hodge structure (V ,∇, {F i}i=0,...,k+1) is irreducible as VHS. Hence the
corresponding system of Hodge bundles is stable. Since both the oper and the VHS
filtrations are semistable, by Theorem 1.3.14 they are the same and the associated Higgs
bundle has to be the maximal Higgs system of Hodge bundles. This system of Hodge
bundles is clearly given by the symmetric power of the maximal Higgs in rank 2.

In order to check that the rank 2 maximal Higgs variation of Hodge structure defines the
uniformizing representation of C, notice that the Higgs field can be identified with the
derivative of the period map p : H→ H. Since the Riemann surface C is compact, the
period map is proper. Hence if the Higgs field is an isomorphism, the period map is a
covering map, since it is a proper local isomorphism. It then has to be an isomorphism
since H is simply connected. Hence the period map induces an isomorphism between
C ∼= H /π1(C) and H /ρ(π1(C)), where ρ is the corresponding representation. It follows
that ρ is the uniformizing representation of C.

We can now define another stratification, the Bialynicki-Birula stratification, ofM(n)
DR(C)

.

Proposition 1.3.16 ([Sim10]). For any α, the subsets Gα ⊂ M(n)
DR(C) consisting of

all points (λ,V ,∇) such that limt→0 t · (λ,V ,∇) ∈ Pα is locally closed and it defines a
stratification

M(n)
DR(C) =

⋃

α

Gα

which is called Bialynicki-Birula stratification.

It is not hard to see ([Sim10]) that the minimal and maximal strata of the Bialynicki-Birula
stratification coincide with the minimal and maximal strata of the Shatz stratification.
More in detail, the unique open stratum G0 is the same as the minimal stratum of the
Shatz stratification given by the locus of semistable vector bundles. The limiting locus
P0 ⊂M(n)

H (C) is simply the locus of Higgs bundles with zero Higgs field, corresponding to
the locus of unitary representations inM(n)

B by the Narashiman-Seshadri theorem. This
is also the locus of weight zero variation of Hodge structures. The stratum with minimal
dimension is the oper locus Opn(C) ⊂M(n)

DR(C). The limiting locus Pn is given by the
the (n− 1)-th symmetric power of the maximal Higgs variation of Hodge structures in
rank 2 (see Proposition 1.3.15).

We want to add some remarks about the loci Pα ⊂M(n)
H (C) corresponding to the loci

of complex variation of Hodge structures in M(n)
DR(C). Notice first of all even though

these loci can have positive dimension, Deligne proved that there are only finitely many
Q-variation of Hodge structures.
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Theorem 1.3.17 ([Del87]). Fix a smooth connected variety X and a number n. Then
there are only finitely many Q-variation of Hodge structures on X of rank n.

In general, by the definition of the Hodge metric the monodromy group of a variation
of Hodge structures is contained in some indefinite unitary group U(p, q). We can say
something more. LetM(n)

U(p,q) ⊂M
(n)
DR(C) be the real subspace corresponding to the set

of representations with monodromy group contained into some possibly indefinite unitary
group U(p, q).

Proposition 1.3.18 ([Sim10]). Restricting to the subset of smooth points, the locus of
variations of Hodge structures in Gα is a connected component ofM(n)

U(p,q) ∩Gα.

Finally we want to remark special properties of weight one and real weight two variations
of Hodge structures what will be interesting to relate to Lyapunov exponents (see Section
1.11). A real weight two variation of Hodge structures is given by a real vector bundle
VR over C such that its base change to C defines a complex weight 2 variation of Hodge
structures V .

Proposition 1.3.19. 1. Let V be a weight one variation of Hodge structures. Then
the first piece of the Hodge filtration F 1 = V1,0 is the maximal degree subbundles
among all subbundles of V.

2. Let V be a real variation of Hodge structures of weight two and let V2,0 be the
first piece of the Hodge filtration. Then for every subbundle E ⊆ V it holds
deg(E) ≤ 2 deg(V2,0).

Proof. If V is a weight one variation of Hodge structures, the associated semistable
system of Hodge bundles is given by V1,0 ⊕ V0,1, where V0,1 = V/V1,0. First of all note
that if W ⊆ V1,0, then deg(W) ≤ deg(V1,0). Indeed W ⊕ V0,1 is sub-system of Hodge
bundles. Hence by semistability deg(W) + deg(V0,1) ≤ 0. If E ⊂ V is any subbundle,
then consider the short exact sequence

0→ E ∩ V1,0 → E → E
E ∩ V1,0

→ 0.

Since the quotient E
E∩V1,0 is a subbundle of V0,1, it defines a sub-system of Hodge bundles

and so it has negative degree. By additivity of the degree we finally get

deg(E) = deg(E ∩ V1,0) + deg(
E

E ∩ V1,0
) ≤ deg(V1,0).

If V is a real variation of Hodge structures of weight two, the associated semistable
system of Hodge bundles is given by V2,0⊕V1,1⊕V0,2 where by definition V1,1 = F 1/V2,0

and V0,2 = V/F 1. Let now E ⊆ V be a subbundle. First of all consider the bundle E
E∩F 1 :

Since it is a subbundle of V0,2, it defines a sub-Higgs bundle of the associated system of
Hodge bundles. By semistability it has then to have negative degree and so we get

deg(E) ≤ deg(E ∩ F 1).
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Moreover, since E∩V0,2⊕V1,1⊕V0,2 also defines a sub-Higgs bundle and since deg(V0,2) =
− deg(V2,0) and deg(V1,1) = 0 (this is because V is a real VHS), again by semistability
we obtain

deg(E ∩ V2,0) ≤ deg(V2,0).

To conclude consider the sub-Higgs bundle E∩F 1

E∩V0,2 ⊕ V0,2, which by semistability has
negative degree. It follows that

deg(E ∩ F 1) ≤ deg(E ∩ V0,2) + deg(V2,0).

Using the three inequalities that we obtained we get

deg(E) ≤ deg(E ∩ F 1) ≤ deg(E ∩ V0,2) + deg(V2,0) ≤ 2 deg(V2,0).

The last proposition will be related to the characterization of Lyapunov exponents from
the main equality of Theorem 1.7.10 and Theorem 1.11.3.

1.4 Betti moduli space in rank two and projective structures

In this section we specialize to the rank 2 case and introduce the notion of projective
structure. We will recall known results about the space of projective structures following
[Dum09].

Recall that the rank 2 Betti moduli space

M(2)
B := Hom(π1(C), SL2(C))// SL2(C)

is given by the GIT quotient of the representation variety by the action of conjugation.
Let S be the topological surface underlying C.

Definition 1.4.1. A complex projective strucuture on S is a maximal atlas of charts
mapping open sets of S into P1

C such that the transition functions are restricition of
Möbius tranformations. Equivalently, a projective structure on S is given by a pair
(f, ρ) where ρ : π1(C)→ PSL2(C) is a representation called holonomy representation and
f : H→ P1

C is a ρ-equivariant immersion called developing map.

The pair has to be considered modulo the natural equivalence relation given by precom-
position of developing maps with orientation-preserving diffeomorphisms of S homotopic
to the identity on one side and by conjugation of PSL2(C) on the other.

Let P(S) be space of projective structures on S and T (S) be the Teichmüller space. Note
that since Möbius transformations are holomorphic, a projective structure also determins
a complex structure. We can then consider the forgetful map

p : P(S)→ T (S).

Denote by P(C) := p−1(C) the fiber over a Riemann surface C, which is the space of
projective structures inducing the same holomorphic structure.
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1 Lyapunov exponents on character varieties

Remark 1.4.2. The space P(C) can be identified with the space of quadratic differentials
H0(C,K2

C), using the Schwarzian derivative. The identification is given by associating to
(f, ρ) ∈ P(C) the push-forward to C of the quadratic differential S(f) on H, where S(f)
is the Schwarzian derivative. In the other direction, one associates to φ ∈ H0(C,K2

C) the
projective structure given by (u1(z)/u2(z), ρ) where u1, u2 is a basis of solution of the
differential equation

u′′(z) +
1

2
φ̃(z)u(z) = 0. (1.5)

Here φ̃(z)dz2 is the pull-back of φ to the universal cover H and ρ is the monodromy
associated to the differential equation.

Recall that a representation is called elementary if its action on H3 fixes a point or an
ideal point, or if it preserves an unoriented geodesic. Otherwise it is called non-elementary.
Equivalently a representation is elementary if and only if it is unitary or reducible or
if the image is contained in the subgroup generated by 〈

(
λ 0
0 λ−1

)
, ( 0 −1

1 0 )〉. We denote
byM(2)

B

′
the subspace of non-elementary representations. It is a Zariski-dense subset

contained in the smooth locus ofM(2)
B .

Remark 1.4.3. In general, there is another important dense subset ofM(n)
B defined by

representations with Zariski dense image. In the case of the SL2(C)-representation variety,
this locus is the same as the one of simple representations (see [Mon17, Remark 2.13]).

We can relate the set of projective structures and the Betti moduli space via the holonomy
map, which sends a projective structure to its associated holonomy representation.

Theorem 1.4.4 ([GKM00],[Hej75],[Ear81],[Hub81]). The holonomy map

hol : P(S)→M(2)
B

has image inM(2)
B

′
, it is surjective on this set and it is a local biholomorphism.

The holonomy map is not injective, in fact all the fibers are infinite, and it is not a
covering map.

We will now restrict the holonomy map to the fibers P(C) of the forgetful map p :
P(S)→ T (S) and recall the following result.

Theorem 1.4.5 ([Dum09]). For every C ∈ T (S), the restriction hol| P(C) is a proper holo-
morphic embedding. Consequently the image hol(P(C)) is a complex-analytic subvariety
ofM(2)

B

′
.

Notice that, since P(C) is an affine space modeled on H0(C,K2
C) ∼= C3g−3, then also the

image hol(P(C)) is.

We want now to recall some definitions of special subgroups of SL2(C). A discrete
subgroup Γ ⊂ PSL2(R) is called Fuchsian. A discrete subgroup Γ ⊂ PSL2(C) is called
Kleinian. A quasi-Fuchsian group is a Kleinian group Γ such that the accumulation
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1.5 Special loci of Betti and De Rham moduli spaces in rank 2

points of the Γ-action on ∂H3 is a quasi-circle. They are quasi-conformal deformations of
Fuchsian groups. These special subgroups of SL2(C) define special subsets ofM(2)

B . We
recall now their properties. Let QF(S) be the subspace of quasi-Fuchsian representations
and D(S) be the subspace of discrete representations.

Theorem 1.4.6 ([Dum09]). The subset of discrete representations D(S) ⊂M(2)
B is closed

in the analytic topology. Its interior is the locus QF(S) of quasi-Fuchsian representations.

Let the real Betti moduli space defined as

M(2)
B,R := Hom(π1(S), SL2(R))// SL2(R).

We want to recall some results about this space.

Theorem 1.4.7 ([Gol88]). The real representation variety M(2)
B,R has one connected

component for each even integer e with 0 ≤ |e| ≤ 2g − 2. The integer e correponds to the
Toledo invariant or the Euler number associated to a representation.
In the case of the maximal integer e = 2g − 2, the connected componentM(2)

B,R,2g−2 is the
same as the space of Fuchsian representations.
In the case of the minimal integer e = 0, the connected componentM(2)

B,R,0 is contained
in the space of elementary representations.

Remark 1.4.8 ([Dum09]). The space QF(S) can be identified, using the Bers simultaneous
uniformization theorem, with the space T (S)× T (S) where S represents the surface S
with opposite orientation. This identification gives a holomorphic embedding

QF(S) ∼= T (S)× T (S) ↪→M(2)
B .

The diagonal {(C,C) : C ∈ T (S)} corresponds to the space of Fuchsian representation
MR

B(S)2g−2
∼= T (S) but the induced embedding is not holomorphic. The image is a

totally real submanifold.

1.5 Special loci of Betti and De Rham moduli spaces in rank 2

We want to give a more detailed description of some special loci of the Betti and the de
Rham moduli spaces in rank 2. In particular, we want to use the geometric tool given by
projective structures to understand better some special loci. For example, we will notice
that the oper locus ofM(2)

DR(C) corresponds to the locus P(C) of projective structures
on C. We will conclude this section with a summary schematic picture of these loci in
the Betti and the de Rham moduli spaces.

1.5.1 Shatz stratification in rank 2 In rank two, the Shatz stratification consists of
g Shatz strata. The degree of the maximal destabilizing subbundle varies in the set
{0, 1, . . . , g − 1}. Indeed flat bundles in the oper locus, which is the maximal stratum,
have maximal destabilizing subbundle of degree g − 1 (see Theorem 1.3.12).
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1 Lyapunov exponents on character varieties

1.5.2 Locus of semistable bundles and unitary locus in rank 2 The minimal Shatz
stratum is the same as the minimal Bialynicki-Birula stratum in rank 2 and it is given
by semistable flat bundles. This is an open dense subset containing the space of unitary
representations as a closed subspace. The space of unitary representations is the same as
the space P0 defined in section 1.3.5 defined by variation of Hodge structures of weight
zero. Moreover, the space of stable bundles can be identified with the tangent bundle to
P0 (see Section 1.3.3).

The subspace of the semistable locus given by semistable but not stable bundle is a
closed subset and corresponds to non simple representations. This subspace is contained
in the space of elementary representations.

1.5.3 Oper locus in rank 2 We want to describe more in detail the maximal Shatz
stratum, which we identified with the oper locus Op2(C) ⊂M(2)

DR(C). Recall that it is
also the maximal Bialynicki-Birula stratum. It is a (3g−3)-dimensional closed subvariety
given by the locus of flat bundles having a sub-line bundle with maximal possible degree,
namely g − 1. Indeed in this case the oper filtration is given by 0 ⊂ V1 ⊂ V with
V1
∼= K1/2

C (see Proposition 1.3.10).

We want first of all describe the correspondence between the oper locus and set of
holonomies of the projective structures P(C) inducing the same complex structure C.

Proposition 1.5.1. The subset hol(P(C)) ⊂M(n)
B correponds via the Riemann-Hilbert

correspondence to the oper locus Op2(C) ⊂ M(2)
DR(C). Moreover, if V is an oper, the

meromorphic map
sV1 : H→ P1

defined by the inclusion of the sub-line bundle V1 ⊂ V given by the oper filtration is the
developing map associated to the projective structure corresponding to the oper.

Proof. For the proof of the first statement, it is enough to combine the description of
opers given by Proposition 1.3.11 and Remark 1.4.2 about the relation of projective
structures and differential equations.

In order to prove the second statement we need to use the construction of the oper
filtration (1.4) starting from the local system defined by the differential equation. Using
the notation of as in (1.4), the inclusion V1

∼= K1/2
C ⊂ V = OC ⊗ V is given by

V1 = {f1 ⊗ v1 + f2 ⊗ v2 : f1ϕ(v1) + f2ϕ(v2) = 0} ⊂ V

where v1, v2 are a local basis of the solution of the local system. Recall that the

devoloping map in Remark 1.4.2 was exactly defined as the meromorphic function
ϕ(v1)

ϕ(v2)
.

It is immediate to see that the map sV1 defined by the inclusion of the pull-back of V1

into the trivial vector bundle on H is given by the same meromorphic map.
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1.5 Special loci of Betti and De Rham moduli spaces in rank 2

Now that we know that the oper locus corresponds to the space hol(P(C)) in M(2)
B

defined by holonomies of projective structures inducing the same complex structure C,
we can understand better the oper locus in rank 2 and its intersection with the locus of
real representations.

Theorem 1.5.2 ([Fal83],[Dum09]). For each C ∈ T (S), the intersection of hol(P(C))

andM(2)
B,R is transversal. Moreover, the intersection of hol(P(C)) and the Fuchsian locus

M(2)
B,R,2g−2 is countable. Each one of these Fuchsian points is contained in the open set of

quasi-Fuchsian holonomy representations in hol(P(C)). These open sets are connected,
contractible and biholomorphic to T (S). The closure of these open sets gives the space of
discrete representations in hol(P(C)).

The proof of the transversality of the intersection of hol(P(C)) and the real rank 2
character was proved by Faltings by showing that the tangent space H0(C,K2

C) of the
oper locus does not intersect the tangent space H1(π1(C), sl2(R)) of the real character
variety in the tangent space H1(π1(C), sl2(C)) of the rank 2 character variety. Another
interesting result proved in the same paper is that the situation described in the last
theorem persists with the deformation of the complex structure of C. More specifically,
Faltings proved the following.

Theorem 1.5.3 ([Fal83]). Let C be a hyperbolic Riemann surface with n cusps. The
space {Op2(C)}C∈Tg,n defines a vector bundle of rank 3g − 3 + n over the Teichmüller
space Tg,n. Moreover the holonomy mapping is a local isomorphism of the total space of
this vector bundle into the rank 2 character variety.

Remark 1.5.4. There is a special Fuchsian representation point in hol(P(C)), namely the
point corresponding the uniformizing representation of C. The open connected set B(C)
of quasi-Fuchsian representations containing this point is given by the image under the
holonomy map of the Bers embedding

B(C) = hol(Im(T (S) ↪→ P(C))) ⊂M(2)
B .

The Bers embedding is defined by

T (S) ↪→ P(C), Y 7→ ΣY (C)

where ΣY (C) is the projective structure on C induced by the quasi-Fuchsian group
Q(C, Y ) given by the simultaneous uniformization theorem.

1.5.4 Variation of Hodge structures locus in rank 2 Thanks to Hitchin in [Hit87], we
know how the connected components Pe ⊂M(2)

DR(C) of the variation of Hodge structures
locus look like. More in detail, we know the corresponing system of Hodge bundles.
These are indexed by an integer 0 ≤ e ≤ g − 1. For e = 0, we already recalled that P0 is
the space of variations of Hodge structures of weight 0, which corresponds to unitary
representations. For e > 0, the space Pe parametrizes Higgs bundles of the form

V = V0 ⊕ V1, Φ : V1 → V0 ⊗KC ,
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1 Lyapunov exponents on character varieties

where V0 and V1 are line bundles of degrees −e and e respectively. These systems of
Hodge bundles correspond to weight one complex variations of Hodge structures. By the
trivial determinant condition det(V0 ⊕ V1) = V0 ⊗ V1 ∼= OC , and so V0 ∼= (V1)∗. Note
that the Higgs field Φ is a section of the line bundle (V1)∗⊗V0⊗KC of degree 2g−2−2e,
hence e ≤ g − 1 and in case of equality, Φ is an isomorphism. Let D ∈ Sym2g−2−2e(C)
be the divisor of Φ. Then we have only finitely many possibilities for V1, determined by
the isomorphism (V1)2 ∼= KC ⊗OC(−D). We have then the parametrization

Pe ∼= Sym2g−2−2e(C)× finite#

which gives that the dimension of Pe is 2g − 2− 2e. For e = g − 1, the Higgs field is an
isomorphism and we get the only variation of Hodge structure on the oper locus, which
corresponds to the uniformizing representation of C (see Proposition 1.3.15).

Note finally that the locus Pe belongs to the e-th Shatz stratum, which is defined as the
locus of flat bundles such that the degree of the maximal destibilizing subline bundle is
e, for 0 ≤ e ≤ g − 1. Indeed, by Proposition 1.3.19 the first piece of the Hodge filtration
V1 is the maximal destabilizing subsheaf of V .

1.5.5 Real representations locus Finally, we would like to recall that the real repre-
sentation locus M(2)

B,R ⊂ M
(2)
B given by representation with image in SL2(R), has one

connected component for each integer 0 ≤ e ≤ 2g − 2. The connected component
M(2)

B,R,2g−2 is the same as the space of Fuchsian representations and the connected com-
ponent M(2)

B,R,0 is contained in the space of elementary representations. It would be
interesting to understand better the intersection of the other real components with the
oper locus.

1.5.6 Summarizing picture We present a summarizing picture representing the special
loci that we described. In each one of the g Shatz strata we find the complex variation
of Hodge structures Loci Pe. The locus P0 of weight zero variation of Hodge structures
corresponds to the locus of unitary representations and it is contained in the minimal
open Shatz stratum of semistable flat bundles. The locus Pg−1 of maximal Higgs
variation of Hodge structures, corresponding to the s2g lifts to SL2(C) of the uniformizing
representation of C, is contained in the oper locus, the maximal Shatz stratum. Using
the interpretation available in rank 2 of representations as holonomies of projective
structures, we can understand better the oper locus, since it is the same as the set P(C)
of projective structures on C inducing the same original complex structure. Finally the
blue locus is the maximal real representation locus of Fuchsian representations.

1.6 Character varieties for general reductive groups, special
components, dynamical invariants and geometric Oseledets

In this section we want to recall the general picture of the Riemann-Hilbert and Simpson
correspondences in the case of representations in a reductive Lie group G. This description
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M(2)
DR(C)

∼=M(2)
B

dimCM(2)
B = 6g − 6

Semistable locus (dense)

P0 = Hom(π1(C), SU(2))

dimC = 3g − 3

Shatz stratification

Pe

22g︷︸︸︷

Oper locus

dimC = 3g − 3

Op2(C) = Proj(C) ∼= C3g−3

Bers embedding
of Teichmüller space

Discrete locus ∩ Op2(C)
= closure of quasi-Fuchsian locus ∩ Op2(C)
(countable union of disjoint closed subsets)

M(2)
B,R,2g−2

Pg−1

Uniformizing
representation

Figure 1.1: Betti and de Rham moduli spaces in rank 2 and special loci.

will allow us to define Hitchin and maximal representations. We will follow the description
given in [Mau15]. We also recall the definition of important invariants like the Toledo
invariant, the critical exponent, the entropy and the minimal area. The geometric
Oseledets ergodic theorem will allow us to talk about Lyapunov exponents associated to
a G-flat bundle. We finally speculate that this point of view can help to relate Lyapunov
exponents to the other cited invariants.

1.6.1 Flat G-bundles and G-Higgs bundles Let M be a Kähler manifold, M̃ be its
universal cover and G be a reductive real linear algebraic group. Let ρ : π1(M)→ G be
a representation. Define the principal G-bundle

PG := M̃ ×ρ G := π1(M)\(M̃ ×G).

Since PG is the quotient of the trivial G- bundle M̃ ×G, it has a canonical flat Ehresman
connection. Let K be a maximal compact subgroup of G and X := G/K be the
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1 Lyapunov exponents on character varieties

associated symmetric space. A reduction to the structure group of PG to K is a K-
principal subbundle PK ⊂ PG together with an isomorphism PK×KG ∼= PG. A reduction
of the structure group of PG to K is equivalent to a global section of the associated
X -fiber bundle PG/K ∼= M̃ ×ρ X , or equivalently to a ρ-equivariant map f : M̃ → X .
The bundle PK is retrieved as the pull-back

PK = π1(M)\f ∗(G)

of the principal K-bundle G→ X .
Recall that the connection form associated to a Ehresman connection is the projection
η : TPG → TPG to the vertical bundle, i.e. η ∈ A1(PG, TPG). A connection η is a
principal connection if it behaves equivariantly with respect to the adjoint action of the
group G. In this case we can view the principal connection η as an element of A1(PG, g),
where g is the Lie algebra of G. Consider the Cartan decomposition g = k⊕ p, where k is
the Lie algebra of K. Let ηG ∈ A1(PG, g) be the canonical flat connection on PG. Let
ηK ∈ A1(PK , k) be the connection induced on PK by the pullback f ∗λ of the canonical
connection λ ∈ A1(G, TX ) of the K-bundle G→ X . Let finally Θ ∈ A1(PG, p) be the
connection induced by the differential of f seen as a section of π1(M)\f ∗(TX ) → M .
We then get that on PK

ηG = ηK + Θ.

The previous equality corresponds in the classical Simpson correspondence to the equality
of the flat connection with the sum of the harmonic Chern connection and the Higgs
field, which here are represented respectively by ηK and Θ. In order to make the last
sentence precise one has to pass to the complexified principal bundles. A Higgs principal
G-bundle is defined as a holomorphic KC-bundle PKC together with a holomorphic (1, 0)-
form θ ∈ A1,0(M,PKC ×Ad pC) satisying θ ∧ θ = 0. Here θ is the Higgs field and it
defined as the (1, 0)-part of the complexified version of Θ = df . In this general setting
Simpson correspondence still holds, meaning that there is a correspondence between
Higgs polystable principal G-bundles with vanishing Chern classes and flat principal
G-bundles.

For every finite dimensional representation σ : G → Aut(V ) we can construct the
associated vector bundle PG ×σ V . Under this operation, applying the construction
previously described we retrieve the usual correspondence between flat vector bundles
and Higgs vector bundles.

Finally we recall the definition of Toledo invariant, which allows us to define maximal
representations. Let C be a hyperbolic Riemann surface and ρ : π1(C)→ G be a reductive
representation into a group of Hermitian type. Let X be the Hermitian symmetric space
associated to G and T 1X be its holomorphic tangent bundle. Let f : H → X be the
associated harmonic ρ-equivariant map. Let f ∗(T 1X ) be the bundle over C induced by the
pull-back. Since X is Kähler-Einstein, there is a constant λX such that λX c1(T 1X ) = ωX ,
where ωX is the G-invariant Kähler form.

Definition 1.6.1. The Toledo invariant associated to ρ is defined as

Tol(ρ) =

∫

C

f ∗(ωX ) = λX deg(f ∗(T 1X )).
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The Toledo invariant is constant on the connected components of the character variety
Hom(π1(S), G)//G and it satisfies a Milnor-Wood type inequality, namely:

|Tol(ρ)| ≤ rk(X ) vol(C) =
1

2π
rk(X ) deg(Ω1

C).

A representation ρ for which Tol(ρ) = 1
2π

rk(X ) vol(C) is called maximal representation.

We recall an important example from [Mau15] where G = SU(p, q), which is a simple Lie
group of Hermitian type. Let ρ : π1(X)→ G be a reductive representation and let σ be
a reductive representation of G. Then the Higgs vector bundle (E, θ) associated to ρ and
σ splits as a direct sum E = V ⊕W , where rk(V ) = p and rk(W ) = q, and the Higgs
field has the form

θ =

(
0 β
γ 0

)
, β : W → V ⊗ Ω1

M , γ : V → W ⊗ Ω1
M .

If f : M̃ → X = SU(p, q)/S(U(p) × U(q)) is the corresponding harmonic map, since
θ = df 1,0 we get that W ∗ ⊗ V ∼= π1(M)\f ∗(T 1,0X ). The Toledo invariant is then
essentially given by the degree of W :

deg(f ∗(T 1X )) = p deg(W ∗) + q deg(V ) = −(p+ q) deg(W ).

If p ≥ q, the Milnor-Wood inequality can be rewritten in this case as

| deg(W )| ≤ q

2
deg(Ω1

C).

This inequality is not too hard to prove. We recall the proof from [Mau15]. If β = 0
then W is a Higgs subsheaf of E and by the polystability of E the degree of W is less or
equal than zero. If β 6= 0, then

deg(W ) + q deg(T 1
C) = deg(ker(β)) + deg(Im (β)).

Since W ⊕ Im (β) is a Higgs subsheaf of E, by polystability of E we get deg(Im (β)) ≤
− deg(W ). Also ker(β)⊗ Ω1

C is a Higgs subsheaf of E, and so

deg(ker(β)) + (q − rk(β)) deg(Ω1
C) ≤ 0.

Summing up we get the desired bound. The other inequality deg(W ) ≥ − q
2

deg(Ω1
C) can

be obtained in the same way using γt : W ∗ ⊗ T 1
C → V ∗.

Remark 1.6.2. If the the Higgs vector bundle (E, θ) is a system of Hodge bundles, then
the Hodge metric defines a structure of SU(p, q)-Higgs bundle. The vectors bundles V
and W defined above are given by

V =
⊕

i≡0(2)

Ei,j, W =
⊕

i≡1(2)

Ei,j.

For example if the system of Hodge bundles corresponds to a variation of Hodge structures
of weight one, then V = E0,1, W = E1,0 and by Griffiths transversality γ = 0. The
Milnor-Wood inequality is the same as the Arakelov inequality and maximality implies
that the Higgs field is an isomorphism and the base curve is a Shimura curve (see [VZ04]).
A similar result holds true for variation of Hodge structures of real K3 type, namely such
that rk(E0,2) = rk(E2,0) = 1. Also in this case the Milnor-Wood inequality is the same
as the Arakelov inequality. Maximal K3 variation of Hodge structures were described in
[STZ03].
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1.6.2 Maximal representations and Hitchin components In this section we recall
the definition of special components of the character variety Hom(π1(C), G)//G where
C is a hyperbolic Riemann surface. They are examples of higher Teichmüller spaces,
which means that they are connected components consisting of discrete and faithful
representations. Moreover we describe some known invariants and recall how these
invariants behave on these higher Teichmüller spaces.

Recall that if G is a split real simple Lie group, then there is an embedding i : SL2(R) ↪→ G
which is unique up to conjugation.

Definition 1.6.3. Let G be a split real simple Lie group. The Hitchin component
of the character variety Hom(π1(C), G)//G is the connected component containing a
principal Fuchsian representation, i.e. a representation given as the composition of i with
a Fuchsian representation of π1(C) in SL2(R).

Representations in the Hitchin component are discrete and faithful. For G = SL2(R) and
G = SL3(R) the Hitchin component parametrizes hyperbolic structures, resp. convex
real projective structures on S. In [Hit92], Hitchin showed that the Hitchin component
is homeomorphic to a vector space of dimension − dim(G)χ(C). He proved this result
by giving a parametrization of the Higgs bundles corresponding to representations in
the Hitchin component. He proved that the Hitchin component can be parametrized
by
⊕n

j=2 H0(C,KjC). The embedded copy of Teichmüller space is given by setting all
but the quadratic differentials equal to zero. The Higgs bundle associated to (qj) ∈⊕n

j=2 H0(C,KjC) is given by

E = K
n−1

2
C ⊕K

n−3
2

C ⊕ · · · ⊕ K−
n−3

2
C ⊕K−

n−1
2

C

with Higgs field φ depends explicitly on the (qj) ∈
⊕n

j=2 H0(C,KjC).

If G is a simple Lie group of Hermitian type, we defined the Toledo invariant associated
to a reductive representation ρ : π1(S)→ G, see Definition 1.6.1.

Definition 1.6.4. Let G be a simple Lie group of Hermitian type. The space of maximal
representations is the subset of the character variety Hom(π1(S), G)//G consisting of
maximal representations, i.e. the space of representations whose Toledo invariant attains
the maximal possible value with respect to the Milnor-Wood inequality.

The space of maximal representations is a union of connected components and it consists
of faithful and discrete representations.

For G = PSL2(R) the Hitchin component is the same as the space of maximal represen-
tations. It is Teichmüller space. For groups G which are both split and of Hermitian
type not locally isomorphic to PSL2(R) like Sp2n(R), the Hitchin component is a proper
subset of the space of maximal representations.

Both maximal representations and representations in the Hitchin components are examples
of Anosov representations. A representation is called Anosov if it satisfies special
dynamical properties. It would be very interesting to understand if the Anosov property
can be related to Lyapunov exponent, but we will not investigate this further here.
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1.6.3 Critical exponents, entropy and minimal area of a representation In this
section we want to describe invariants of the character variety, in particular of Hitchin
components, that were investigated in the last years. Let S be a closed surface of genus
at least two.

Definition 1.6.5. The lenght spectrum of a representation ρ : π1(S) → SLn(C) is the
function

Lρ : π1(S)→ R+, Lρ(γ) =
1

2
log

∣∣∣∣
λ1(ρ(γ))

λn(ρ(γ))

∣∣∣∣
where λ1 and λn denote the eigenvalues with highest and lowest modulus respectively.

If ρ is a Fuchsian representation, Lρ(γ) is the lenght of the closed geodesic in S corre-
sponding to γ with respect to the hyperbolic metric defined by ρ.

Definition 1.6.6. Let ρ : π1(S)→ SLn(R) be a representation. The entropy of ρ is the
number

htop(ρ) = lim sup
t→∞

1

t
log ]{γ ∈ π1(S) : Lρ(γ) < t}.

The definition of the entropy is justified by the construction of Labourie [Lab08] where
he identifies Lρ(γ) as the period of the closed orbit corresponding to γ with respect to a
flow (φρ)t. The entropy of ρ is then the same as the topological entropy of the flow (φρ)t.

Let us define another related invariant. Let X be the symmetric space of SLn(R) and
normalize the invariant metric dX so that the totally geodesic embedding of H defined
by SL2(R) ⊂ SLn(R) has curvature −1.

Definition 1.6.7. The critical exponent of a representation ρ : π1(S) → SLn(R) is
defined by

hX (ρ) = lim
t→∞

1

t
log ]{γ ∈ π1(S) : dX (o, ρ(γ)(o)) < t}

for some (and hence any) o ∈ X .

As explained in [Zha15], the relation between these two invariants is given by the equality

dX (o, ρ(γ)(o)) = ||µ(ρ(γ))|| = cn

√√√√
n∑

i=1

µi(ρ(γ))2 (1.6)

where µ : SLn(R)→ a+ is the Cartan projection, µi are the singular values and cn is a
positive constant depending on n. Using the inequality

||µ(ρ(γ))|| ≥ cn
n
|µ1(ρ(γ))− µn(ρ(γ))|

one then gets that for any ρ in the rank n Hitchin component

htop(ρ) ≥ cn
n
hX (ρ).

The last invariant that we want to define is the minimal area of a representation.
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1 Lyapunov exponents on character varieties

Definition 1.6.8. The minimal area of a representation ρ : π1(S)→ G into a semi-simple
Lie group G is defined by

MinArea(ρ) = inf
J∈T (S)

eρ(J), eρ(J) =

∫

(S,J)

||d(f)||

where eρ(J) is the energy of the unique harmonic ρ-equivariant map f from the Riemann
surface (S, J) to ρ(π1(S))\X .

If ρ is in the Hitchin component then Sanders [San14] proved that harmonic equivariant
maps f : (S, J)→ ρ(π1(S))\X are immersions and hence MinArea(ρ) can be interpreted
as the area of the minimal immersion of (S, J) in ρ(π1(S))\X . It can be showed that
the metric induced on this immersed surface is negatively curved and so the topological
entropy is bounded above by hX (ρ). By using a theorem of Katok relating the topological
entropy to the area of the surface, we get

MinArea(ρ) ≥ −2πχ(S)

hX (ρ)
.

In the case of G = Sp2n(R), Labourie [Lab08] proved that the minimal area can be also
related to the Toledo invariant.

Theorem 1.6.9 ([Lab08]). For every representation ρ : π1(S)→ Sp2n(R) we have

MinArea(ρ) ≥ |Tol(ρ)|.

Moreover if ρ is maximal and the last inequality is an equality, then ρ comes from the
diagonal representation

∏n
i=1 SL2(R) ⊂ Sp2n(R).

Finally we want to recall the main result of Poitrie and Sambarino [PS17], which is the
following bound on the Hitchin component together with a characterization of symmetric
powers of Fuchsian representations.

Theorem 1.6.10 ([PS17]). If ρ : π1(S)→ SLn(R) is the Hitchin component, then

htop(ρ) ≤ 2

n− 1
, hX (ρ) ≤ 1, MinArea(ρ) ≥ −2πχ(S)

with equalities if and only if ρ is the symmetric power of a Fuchsian representation.

There are analogous results for example for maximal representations into SO0(2, n)
([CTT17]).
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1.6 G-character varieties, special components,dynamical invariants and geometric Oseledets

1.6.4 Geometric Oseledets Theorem In this section we describe a geometric version
of the Oseledets theorem due to Kaimanovich, which allows us to naturally talk about
Lyapunov exponent associated to G-principal flat bundles. We present the version of the
geometric Oseledets theorem given in [Fil17b]. Given a finite dimensional representation
of G, passing to the associated vector bundle we retrieve the usual Oseledets theorem.
We will also recall the main idea of [Fil17b], namely that we can give a bound on the
number of zero exponent depending on the real rank of G, and we apply it to the case
of variations of Hodge structures. We finally speculate over a potential application of
the geometric Oseledets point of view, which we believe could lead to a possible relation
between critical exponent and the top Lyapunov exponent.

Let G be a real semisimple Lie group with Lie algebra g. Let K be a maximal compact
with Lie algebra k. Then we have a Cartan decomposition g = k⊕ p. Choose a maximal
abelian subalgebra a ⊂ p and consider the root system given by the weights Φa ⊂ a∨. Let
X = G/K be the associated symmetric space. Recall that a geodesic in X is uniquely
determined by a choice of a vector in a and an element of K. Indeed, using the Iwasawa
decomposition G = KAK one can show that a geodesic starting at e ∈ X is given as

γ(t) = k exp(t · α)e

where k ∈ K is the direction and α ∈ a+ is in the positive Weyl chamber and can be
considered as the speed. A geodesic has unit speed if ||α|| = 1. We can now state
Kaimanovich version of Oseledets theorem for principal G-flat bundles over a Riemann
surface.

Theorem 1.6.11 (Geometric Oseledets [Fil17b]). Let C be a hyperbolic Riemann surface.
Let G be a semisimple group and let PG → C be a principal G-flat bundle. Let Gt be
the lift of the geodesic to the pull-back of PG to T 1C. Let f : H→ X be a reduction of
the structure group to K, which is the same as a section s : C → PG/K of the X -fiber
bundle, such that the following integrability condition holds:

∫

C

(
sup

t∈[−1,1]

dX (s(gt(x)), Gt(s(x)))

)
dx <∞.

Then there is a vector Λ ∈ a+, called the Lyapunov vector, satisfying the following property.
For almost any x ∈ C, let γx(t) = k1Atk2 be the geodesic in X with γ(0) = s(gt(x)) and
γ(1) = Gt(s(x)), which is the same as the geodesic from f(x̃) and f(gt(x̃)), where x̃ ∈ H
is a lift of x. Then

lim
t→∞

1

t
log(At) = Λ.

Moreover there is a convergence of directions in K which corresponds to the Oseledets
decomposition.

The main example to keep in mind in order to see the relation to the standard Oseledets
theorem is G = GLn(R). Then K = On(R) and the associated symmetric space X is
the space of metrics coming from inner products on Rn, with distinguished point eK
given by the euclidean metric || · ||e. Then a point gK ∈ X corresponds to the metric
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1 Lyapunov exponents on character varieties

||g−1(·)||e. The standard Oseledets theorem for a vector bundle E → C is equivalent to
the geometric version for the associated principal G-bundle given by the frame bundle
(see for example [Fil17a]).

Conversely, given a finite dimensional representation σ : G→ Aut(V ) we can read the
Lyapunov exponents of the vector bundle PG ×σ V associated to the principal bundle
PG from a Lyapunov vector Λ ∈ a+ in the following way. Let Σσ ⊂ h∨ be the weights
of σ, where h is a maximal Cartan subalgebra of g. The Lyapunov exponent of the
vector bundle PG ×σ V , which are the same as the Lyapunov exponents of the linear
representation of π1(C) given as the composition of σ with the representation defining
the flat G-bundle PG, are given by evaluation:

Σσ ↪→ h∨ −→ a∨
evΛ−→ R .

For example, if we consider G = SLn(R) with the standard representation, the top
Lyapunov exponent of a G-flat bundle is given by

λ1 = lim
t→∞

1

t
µ1(f(gt(x̃)))

where f : H → X is the unique harmonic equivariant map and µn : G → a+ → R is
the top singular value of the matrix given by the the Cartan projection (here we have
chosen x̃ ∈ H so that f(x̃) = 0 ∈ X is the point stabilized by K = SOn). Notice that, by
equality (1.6)

λ1 ≤ cn lim
t→∞

1

t
dX (f(x̃), f(gt(x̃)))

where cn was a positive constant depending only on n. We speculate that the right hand
side can be related to the critical exponent for Hitchin representations via a inequality
of the kind λ1(ρ) ≤ 2

htop(ρ)
, but we have not yet investigated it further. Such a bound

would yield immediately a lower bound the we conjecture later for the top Lyapunov
exponent on Hitchin components using [PS17].

Remark 1.6.12. Geometric Oseledec theorem sets a bound to the number of zero Lyapunov
exponents of a flat G-bundle depending only on G ([Fil17b, Cor.4.4]). The number of zero
exponents of a flat G-bundle is greater or equal than the number of weights mapped to
zero via the map Σσ ↪→ h∨ −→ a∨. For example if G = SU(p, q) acts with the standard
representation on Cp+q, any vector bundle coming from a G-flat bundle has at least |p−q|
zero exponents ([Fil17b, Ex.4.5]). This example can be applied to complex variations
of Hodge structures, since by definition the image of the monodromy representation
is in SU(p, q) where p =

∑
i≡0(2) h

i,j is the dimension of the even Hodge bundles and
q =

∑
i≡0(2) h

i,j is the dimension of the odd ones.

1.7 Lyapunov exponents and holomorphic subbundles

In this section we prove one of the main results, namely a refinement of the main theorem
of [EKMZ18]. We will work in the general setting of non-necessarily compact base
curve, since the results that we will show can be proven in the general case. Let then
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1.7 Lyapunov exponents and holomorphic subbundles

C = H /Γ be a Riemann surface of finite area. We denote by ∆ := C \ C the boundary
points with respect to the smooth compactification of C. Let ρ : π1(C)→ GLn(C) be
a representation of the fundamental group. We denote by Vρ the local system on C
induced by ρ and by VC := Vρ ⊗C OC the associated holomorphic bundle equipped with
the flat Gauss-Manin connection. Recall that we say that Vρ has non-expanding cusp
monodromies if the eigenvalues of ρ(γ) have absolute value one, for every simple loop γ
around a cusp c ∈ ∆.

1.7.1 Parabolic bundles and Metric extensions This section summarizes results and
notions of [Sim88], [Sim90] and [EKMZ18]. We will introduce parabolic bundles and
metric extensions, which are needed to treat the case of non compact base curves.

Definition 1.7.1. A parabolic bundle V over C is a holomorphic vector bundle together
with a [0, 1)-filtration F ·Vc on the fiber Vc

Vc = V≥α1
c ) V≥α2

c ) · · · ) V≥αn+1
c = V≥1

c = 0

for every c ∈ ∆.

If we denote by 0 ≤ α1 < α2 < · · · < αn < αn+1 = 1 the weights of the filtration of a
fiber Vc, the filtered dimension of (Vc, F ·) is defined as

dimF ·(Vc) =
n∑

i=1

αi dim grαi(Vc)

where grαi(Vc) is the graded piece at weight αi.

Definition 1.7.2. The parabolic degree of a parabolic bundle (V , F ·) is defined to be

degpar(V , F ·) = deg(V) +
∑

c∈∆

dimF · Vc.

Following [EKMZ18], we define acceptable metrics. This notion is useful in order to
compute parabolic degrees of parabolic bundles.

Definition 1.7.3. A smooth metric h on a holomorphic vector bundle VC over C is
called acceptable if the curvature Rh of the metric admits locally near every cusp c ∈ ∆,
a bound

|Rh| ≤ f +
M

|q|2| log(q)|2
with f ∈ Lp(C) for some p > 1 and some constant M .

When we consider a holomorphic vector bundle VC over C equipped with a smooth
metric h, we can talk about a canonical metric extension of VC on C, which in general is
just a coherent sheaf.

Let j : C ↪→ C be the inclusion.
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1 Lyapunov exponents on character varieties

Definition 1.7.4. The metric extension Ξh(VC) of VC to C with respect to the metric
h is given by the subsheaf of j∗(VC) defined by following growth condition. If s(q) is a
local section of j∗(VC) over U ⊂ C around a cusp c ∈ U ∩∆, we set s(q) ∈ Ξh(VC)(U) if
for all ε > 0 there exists a constant M(ε) such that |s(q)|h ≤M(ε)|q|−ε.
The parabolic structure of Ξh(VC) over the cusps is given by the following filtration. If
s(q) is a local section of Ξh(VC) around a cusp c ∈ ∆, we set s ∈ (Ξh(VC))≥αc if for all
ε > 0 there exists a constant M(ε) such that

|s(q)|h ≤M(ε)|q|α−ε.

We want now to generalize the definition of acceptable metric to parabolic bundles over
C.

Definition 1.7.5. A smooth metric h on a parabolic vector bundle (V , F ·) over C
is called acceptable if h is an acceptable metric for the holomorphic bundle V|C and
(V , F ·) = Ξh(V).

We recall now a result which allows us to compute the parabolic degree of a parabolic
vector bundle using any acceptable metric.

Proposition 1.7.6 ([EKMZ18]). If (V , F ·) is a parabolic vector bundle over C of rank
k, then

degpar(V) = degpar(∧kV).

Moreover if h is an acceptable metric, then

degpar(V , F ·) =
1

2πi

∫

C

∂∂ log(det(hij))

where hij = h(ei, ej) is the Gram matrix of the metric.

Finally we can define the notion of admissible metric on a holomorphic flat bundle over
C. Admissible metrics are the ones that can be used to compute Lyapunov exponents.

For any flat holomorphic vector bundle over C there is a canonical extension, which is
called the Deligne extension. It is a holomorphic vector bundle V on C with a logarithmic
connection ∇ : V → Vρ ⊗ Ω1

C
(log(∆)). Note that for holomorphic flat bundles (VC ,∇)

over C with non-expanding cusp monodromies the Deligne extension has a canonical
parabolic structure (see [EKMZ18]).

Definition 1.7.7. A smooth metric h on the holomorphic flat bundle VC over C is called
admissible if the following conditions hold:

1. The metric h is acceptable for the Deligne extension V of VC with respect to its
canonical parabolic structure.

2. For every cusp c ∈ ∆ with coordinate q, there is some n ∈ N such that for any
e ∈ V≥αc and e′ ∈ V≥α′c it holds

h(e(q), e′(q)) ≤M1|q|α+α′(log |q|)2n, for some M1 > 0.
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1.7 Lyapunov exponents and holomorphic subbundles

3. For every cusp c ∈ ∆ with coordinate q, there is some n ∈ N such that a local
generating section e of det(V) has the lower bound

|e(q)|h ≥M2|q|2 dimF · (Vc)(log |q|)−2n, for some M2 > 0.

We want to highlight that the first condition of the above definitions simply says that for
an admissible metric the Deligne extension is the same as the metric extension and that
the curvature does not grow too fast around the cusps.

We recall the existence lemma for such metrics based on the result by Simspon [Sim90,
Theorem 4].

Lemma 1.7.8 ([EKMZ18]). If a holomorphic flat bundle (VC ,∇) has non-expanding
cusp monodromies, then it admits an admissible metric.

We say that a norm on VC is admissible if it is induced by an admissible metric. Recall
that if VC has non-expanding cusp monodromies, by Theorem 1.1.3 the constant norm is
integrable in the sense of Oseledets theorem. In this case the same property holds for
admissible norms.

Theorem 1.7.9 ([EKMZ18]). If a holomorphic flat bundle (VC ,∇) has non-expanding
cusp monodromies, then any admissible norm is integrable in the sense of Oseledets
theorem.

Admissible norms can then be used to compute Lyapunov exponents.

1.7.2 Holomorphic subbundles, bad locus and main inequality In this section we
will refine the following main bound computed by Eskin-Kontsevich-Möller-Zorich in
[EKMZ18].

Theorem 1.7.10 ([EKMZ18]). Let (VC ,∇) be a holomorphic flat bundle with non-
expanding cusp monodromies. If E ⊂ V is a holomorphic parabolic subbundle of rank k
of the Deligne extension V of VC, then

k∑

i=1

λi(VC) ≥ 2 degpar(E)

deg(Ω1
C

(log(∆))
. (1.7)

In order to state our refinement of inequality (1.7), we need to recall the definition of a
seminorm on

∧k V∨C introduced in [EKMZ18] in the proof of Theorem 1.7.10.

Let h be an admissible metric for VC . By abuse of notation, we will denote also by h the
induced admissible metric on dual exterior powers of VC . We denote by | · |h the induced
norm. Following [EKMZ18], we define a seminorm on

∧k V∨C . For every point c ∈ C,
consider a small open set c ∈ Uc ⊂ C and fix a local basis ω1, . . . , ωk of H0(Uc, E). We
define locally the seminorm on

∧k V∨C as

‖u‖E =
|u(ω1(c) ∧ · · · ∧ ωk(c))|
‖ω1(c) ∧ · · · ∧ ωk(c)‖h

, u ∈
k∧
V∨c ∼=

(
k∧
Vc
)∨

. (1.8)
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1 Lyapunov exponents on character varieties

The seminorm does not depend on the choice of the local frame (ωi) of E since numerator
and denominator are homogenous of the same degree in ωi’s.

The subvector bundle defined by the zero locus of the seminorm will appear in the refined
inequality that we want to prove. In this regard, let us pull-back the vector bundles to
the universal covering π : H→ C of C. Since any local system on a simply connected
space is trivial, the pull-back of the flat bundle VC is trivial. Let us fix c ∈ C and the
isomorphism

π∗(VC) ∼= H×Vc.
The pull-back π∗(E|C) ⊂ π∗(VC) defines a ρVC -equivariant subbundle, where ρVC is the
representation associated to the flat bundle VC . This means that

π∗(E|C)γ(c) = {γ(c)} × ρVC (γ)(Ec) ⊂ H×Vc (1.9)

for every γ ∈ π1(C, c).

Definition 1.7.11. We define the ’trouble making set’, or bad locus,

TEbad := ker

(
k∧
V∨C →

k∧
E∨|C

)
⊆

k∧
V∨C

as the kernel of the map induced by the inclusion E ⊆ V .
Moreover, for any u ∈ ∧k V∨c = H0(H, π∗(

∧k V∨C)), the ’trouble making set’ associated
to u, or bad locus of u, is defined as

TEbad(u) := {z ∈ H : ‖uz‖π∗(E) = 0} ⊆ H .

Notice that TEbad ⊆
∧k V∨C is a holomorphic subbundle of corank 1 and TEbad(u) can

be identified with the intersection of the pull-back π∗(TEbad) to H with the horizontal
foliation induced by the flat bundle

∧k V∨C .
Remark 1.7.12. To give an inclusion of a rank k holomorphic sub-vector bundle E|C ⊂ VC
over C is equivalent to give a section

sE : C → Gk(VC)

of the Grassmanian bundle Gk(VC) of k-planes of VC . Let us fix as above c ∈ C and the
isomorphism π∗(VC) ∼= H×Vc. Then the pull-back section π∗(sE) defines a ρVC -equivariant
holomorphic map

sE : H→ Grass(k,Vc) ↪→ P(
k∧
Vc), sE(z) = (π∗(E)z ⊂ Vc).

The equivariance property is defined by the equality

sE(γ · z) = ρVC (γ) · sE(z), ∀γ ∈ π1(C, c).

For any u ∈ ∧k V∨c ∼=
(∧k Vc

)∨
, we can now rewrite its bad locus as

TEbad(u) = {z ∈ H : sE(z) ∈ ker(u) ⊂ P(
k∧
Vc)}. (1.10)

32



1.7 Lyapunov exponents and holomorphic subbundles

From this description it is clear that either Tbad(u) = H if ker(u) ⊇ Im (sE) or it is a
discrete subset given as the zero set of an holomorphic (non ρVC -equivariant) function on
H.

Notice that parallel transport on the trivial bundle given by the pull-back of V∨ to T 1 H
is simply given, after the choice of a trivialization, by the constant transport

Gt : T 1 H×V∨c → T 1 H×V∨c , Gt(x, u) = (gt(x), u).

From now on we fix a choice of a trivialization and we denote a point in the pull-back
bundle by uz := (z, u) ∈ T 1 H×V∨c and a lift of c ∈ C by c̃ ∈ H .

We will state now a refinement of the main Theorem of [EKMZ18]. Let the notation be as
above. In particular VC is a holomorphic flat bundle over C defined by a representation
ρVC .

Theorem 1.7.13. For any holomorphic subbundle E ⊂ VC of rank k over C, then

k∑

i=1

λi(VC) ≥ 2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ 4π lim

T→∞

1

T

∫ T

0

]{Tbad(u) ∩Dt(c̃)}
vol(Dt(c̃))

dt (1.11)

for almost any c ∈ C and Lebesgue almost any u ∈ ∧k V∨c . Here Dt(c̃) denotes the
hyperbolic ball of radius t in H with center c̃.

Proof. First of all note that it suffices to prove the theorem in the case where E is a line
bundle. Indeed if it is not the case, consider the line bundle L :=

∧k E ⊂ ∧k VC . Then
degpar(L) = degpar(E) by Lemma 1.7.6 and the top Lyapunov exponent of L is just the
sum

∑k
i=1 λi(VC) of the first k exponents. Hence from now on E = L is a sub-line bundle

of VC . Moreover, since the Lyapunov spectrum is symmetric (see Remark 1.1.2), the
Lyapunov spectrum of the dual local system V∨ is the same as the one of V. We will
then focus on computing the top Lyapunov exponent λ1(V∨C) = λ1(VC).

Note that the Cauchy-Schwartz inequality implies that the admissible norm || · ||h induced
by h is greater or equal than the L-seminorm || · ||L defined in (1.8). Indeed, for any
c ∈ C and any u ∈ V∨c it holds

‖u‖L =
|u(ωc)|
‖ωc‖h

≤ ||u||h‖|ωc||h‖ωc‖h
= ||u||h (1.12)

where ω is a local non-zero section of L near c ∈ C.
By Theorem 1.7.9, the norm induced by the admissible metric h is integrable, meaning
that it computes the Lyapunov exponents. We can then write the top Lyapunov exponent
as

λ1(VC) = lim
t→∞

1

t
(log ||Gt(u)||h)

for almost any (c, v) ∈ T 1(C) and Lebesgue almost any u ∈ T 1V∨(c,v). Here we denoted
by T 1V∨ the pull-back of V∨ to T 1(C).
We apply the usual chain of equalities as in [EKZ11] or [EKMZ18] to rewrite the expression
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1 Lyapunov exponents on character varieties

above. We first average over the circle and then use the above Cauchy–Schwarz inequality
(1.12). After that we take the integral of the derivative and then we apply a version of
Green’s formula ([EKZ11, Lemma 3.6]) for the hyperbolic disc Dt(c̃) centered in c̃ ∈ H
with hyperbolic radius t (here the term log ‖Gtrθu‖L is considered in the distributional
sense). Finally we split the integral using the definition of the || · ||L-seminorm and rewrite
directly the second term of the expression in terms of the degree of L as in [EKMZ18].

λ1(VC) = lim
T→∞

1

T

1

2π

∫ 2π

0

log ‖GT rθu‖hdθ ≥ lim
T→∞

1

T

1

2π

∫ 2π

0

log ‖GT rθu‖Ldθ

= lim
T→∞

1

T

1

2π

∫ T

0

d

dt

∫ 2π

0

log ‖GT rθu‖Ldθ

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log ‖uz‖Ldghyp(z) dt

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log |uz(ωz)|dghyp(z) dt +

− lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log ‖ωz‖hdghyp(z) dt

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log |uz(ωz)|dghyp(z) dt +

+
2 degpar(Ξh(L))

deg(Ω1
C

(log(∆))

Note that we could split the log only in the fourth line, since the Laplacian makes the
numerator and the denominator of the L-norm become well-defined functions.
We need to treat the first summand. We write explicitly the hyperbolic Laplacian and
the hyperbolic area form and simplify. We then use that the integral over the ball of the
distribution ∂∂ log(|uz(ωz)|) gives the number of zeros of the holomorphic function uz(ωz)
inside the ball times 2πi (cf. [GH94, Poincaré-Lelong Equation]). The last equality
follows since tanh(t) is bounded and asymptotic to 1 for large t.

lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

∫

Dt(c̃)

∆hyp log |uz(ωz)|dghyp(z) dt

= lim
T→∞

1

T

∫ T

0

tanh(t)

2 vol(Dt(c̃))

(∫

Dt(c̃)

4
∂2

∂z∂z
log |uz(ωz)|

i

2
|dz|2

)
dt

= −2i lim
T→∞

1

T

∫ T

0

tanh(t)

vol(Dt(c̃))

(∫

Dt(c̃)

∂∂ log |uz(ωz)|
)

dt

= 4π lim
T→∞

1

T

∫ T

0

tanh(t)

vol(Dt(c̃))
]{z ∈ Dt(c̃) : uz(ωz) = 0}dt

= 4π lim
T→∞

1

T

∫ T

0

]{z ∈ Dt(c̃) : uz(ωz) = 0}
vol(Dt(c̃))

dt
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Definition 1.7.14. We define the second term in formula 1.11 as the error term

ErrE(u) := 4π lim
T→∞

1

T

∫ T

0

]{TEbad(u) ∩Dt(c̃)}
vol(Dt(c̃))

dt

for u ∈ ∧k V∨c .

Remark 1.7.15. If the limit lim
t→∞

]{TEbad(u) ∩Dt(c̃)}
vol(Dt(c̃))

exists, then the error term is equal to

this limit. We conjecture that this is the case. Note moreover that ErrE(u) = ErrE(λu),
for any λ ∈ C∗. Hence the error term defines a function

ErrE : P(
k∧
V∨C))→ R+ .

1.7.3 Higher dimensional analogues Using the same argument as in the proof of
Theorem 1.7.13, one can prove analogous statements in the case where the base manifold
is a ball quotient or an affine invariant manifold of a stratum of abelian differentials. In
the first case, since ball quotients are locally symmetric spaces of rank 1, the geodesic
flow is ergodic and so the Oseledets multiplicative ergodic theorem can be applied. In
the second case there is a natural SL2(R) ergodic action on affine invariant manifolds.
We omit the details of the proofs since the computations are analogous to the the ones
of the last theorem.

The next Proposition is a generalization of the main result of [KM16].

Proposition 1.7.16. Let V be a weight one variation of Hodge structures over a ball
quotient B = Bn/Γ of constant curvature −4, where Γ is a torsionfree lattice in PU(1, n).
Let B be a smooth compactification of B with normal crossing boundary divisor ∆. Let
E ⊂ V be a holomorphic sub-vector bundle of rank k. Then

k∑

i=1

λi ≥
(n+ 1)c1(Ξh(E)) · c1(ωB)n−1

c1(ωB)n
+ lim
T→∞

1

T

∫ T

0

∫

Bnt (c̃)

∂∂(log |u(sz)|)∧ωn−1
hyp dghyp(z)dt

for almost any c ∈ B and Lebesgue almost any vector u ∈ ∧k V∨c . Here s is a local
generator of

∧k E and Bnt (c̃) is the hyperbolic ball of radius t around the lift c̃ ∈ Bn of
c ∈ B. Finally ωB =

∧n Ω1
B

(log(∆)) is the log-canonical bundle and Ξh(E) is the metric
extension of E with respect to the Hodge metric h.

In the last proposition we only considered weight one variation of Hodge structures since
the integrability of the Hodge norm was proven in this case in [KM16] using the geometry
of the period domain and Royden’s theorem. It is worth investigating if there is a notion
of admissible norm for any flat vector bundle with non expanding monodromy around
the boundary components and if this norm is integrable in the Oseledets sense.

The next proposition is about the case of affine invariant manifolds. It is a generalization
of [EKZ11].
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Proposition 1.7.17. LetM1 be an affine invariant manifold in some stratum of abelian
differentials. Let H be the Hodge bundle and E ⊂ H be a holomorphic sub-vector bundle
of rank k. Then the sum of the top k Lyapunov exponents associated to the ergodic
probability measure ν1 corresponding toM1 satisfy the bound:

k∑

i=1

λi ≥
∫

M1

∆(log ||ω||h)dν1 + ErrE(u)

where the Laplacian is the leafwise Laplacian along Teichmueller disks and ||ω||h is the
Hodge norm of a local section ω of

∧k E. Finally the error term is considered along the
Teichmueller disk passing through the base point of u, for almost any c ∈ M1 and all
u ∈ ∧kH∨c .

Notice that the error term in the last proposition only depends on the Teichmueller disk
passing through the base point of u and the restriction of E to this Teichmueller disk.
Since the error term ErrE(u) is an almost everywhere constant function in u ∈ ∧kH∨,
the proposition implies that if the error term is zero for an affine invariant manifoldM1,
then it has to be zero for all generic affine invariant submanifolds ofM1.

1.7.4 Condition for rationality of Lyapunov exponents We want now to state a
sufficient condition for the sum of the top Lyapunov exponents being equal to the first
term of inequality (1.11). This gives in particular a sufficient condition for the sum of
the top Lyapunov exponents to be rational.

Proposition 1.7.18. Let S ⊂ P(
∧k V∨) be a Gt-invariant closed subset such that

there is a vector u ∈ S computing the top Lyapunov exponents, namely such that∑k
i=1 λi = limt→∞

1
t
(log ||Gt(u)||h). If there is a rank k holomorphic subbundle E ⊂ V

such that
TEbad(u) = ∅, for all u ∈ S

then
k∑

i=0

λi =
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
.

Remark 1.7.19. This last proposition is the analogous of [DD17a, Prop. 3.15] in which
they require a strong irreducility property of the flat bundle in order to have the right
harmonic measure. We do not need any irreducibility property, but the drawback is that
we need the existence of a vector computing the sum of the top exponents. In [DD17a]
they do not need this assumption since for any closed S there is always a harmonic
measure with support in S.

Note that if the main inequality (1.11) of Theorem 1.7.13 were an equality, we would
not need the existence of the additional subbundle S but only the existence of a vector
u ∈ ∧k V∨ computing the top Lyapunov exponents with TEbad(u) = ∅. Indeed in this
case the error term ErrE(u) would be zero and this would suffice. Since we will prove
that over compact base curve (1.11) is an equality (Theorem 1.8.1), we can apply the
previous argument to this situation (Corollary 1.8.2).
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Remark 1.7.20. Consider the Grassmanian bundle Gr(n − k,V) of (n − k)-planes in
V as a subset of P(

∧k V∨) via the Plucker embedding Gr(n − k,V) ⊂ P(
∧n−k V) and

the isomorphism P(
∧k V∨) ∼= P(

∧n−k V). Then the condition that a (n − k)-plane
u ∈ Gr(n − k,V) has emty bad locus, i.e. TEbad(u) = ∅, is equivalent to the condition
that the (n− k)-plane in V represented by u intersects trivially the k-plane defined by
the subbundle E . We will indeed use this criterion to reprove rationality of Lyapunov
exponents for weight 1 and K3 variation of Hodge structures in Section 1.11. The (n−k)-
plane computing the top Lyapunov exponents will be constructed from the Oseledets
subspaces Vλi .

Proof of Proposition 1.7.18. We want to prove that if the bad locus is empty for all
u ∈ S, then we can use the E-norm to compute Lyapunov exponents.
The argument is the standard one relying on the equivalence of any two norms on a finite
dimensional vector space. If the bad locus TEbad(u) = ∅ is empty for all u ∈ S, it means
that the E-norm || · ||E is a norm on the Gt-invariant closed subset S ⊂ P(

∧k V∨). Let
K ⊂ T 1C be a compact positive measure set. Then S|K ⊂ P(

∧k V∨) is a compact subset
and the quotient of the norms || · ||E and || · ||h defines a bounded function on S|K with
minimum greater than zero. This means that there exist two positive constants C1 and
C2 such that

C1||u||h ≤ ||u||E ≤ C2||u||h, ∀u ∈ SK .
Now by Poincaré recurrence Theorem, the geodesic flow on T 1C comes back infinitely
many times to K since it has positive measure. Moreover S is Gt-invariant by assumption.
Let tj be a sequence of times tending to infinity for which gtj(c) ∈ K. Now let u ∈ S be
the vector computing the top Lyapunov exponents, which exists by assumption. We get
then

k∑

i=1

λi = lim
t→∞

1

t
(log ||Gt(u)||h) = lim

tj→∞

1

tj
(C1 log ||Gtj(u)||h) ≤

≤ lim
tj→∞

1

tj
(log ||Gtj(u)||E) ≤ lim

tj→∞

1

tj
(C2 log ||Gtj(u)||h) =

= lim
t→∞

1

t
(log ||Gt(u)||h) =

k∑

i=1

λi.

By following the proof of Theorem 1.7.13, we see that if the error term is computed with
respect to the vector u used above the inequality (1.11) becomes an equality. The claim
then follows directly from it.

The condition to have empty bad locus TEbad(u) for u ∈ ∧k V∨ can be rephrased using
the equivalent definition of TEbad(u) given by expression (1.10) via the equivariant map
sE : H→ P(

∧k Vc) defining E :

TEbad(u) = ∅ if and only if Im (sE) ∩ ker(u) = ∅ ⊂ P(
k∧
Vc). (1.13)
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Remark 1.7.21. If the vector bundle V is of rank 2, then an element u ∈ ∧1 V∨c defines a
point in P(Vc). If E ⊂ V is a sub-line bundle, the developing map defining E

sE : H→ P1
C

is simply a meromorphic function on H equivariant with respect to the action of the
representation ρV defined by V . Then

TEbad(u) = {z ∈ H : sE(z) = u ∈ P1
C}.

Moreover in this case there is only one line u ∈ P(Vc) not computing the top Lyapunov
exponent, namely the line corresponding to the second Oseledets space Vλ2 .

The previous remark together with Proposition 1.7.18 imply the following condition for
equality in the rank 2 situation .

Corollary 1.7.22. Let V be a rank 2 flat bundle over a hyperbolic Riemann surface C
and E ⊂ V a sub-line bundle. If there is a ρV-invariant subset S ⊂ P1

C containing more
than one point and such that sE(H) ∩ S = ∅, then

λ1 =
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
.

Proof. The pull-back of the restriction of the tautological bundle OP1
C
(−1)|S defines a

Gt-invariant closed subset S ⊂ P(V). Since S contains more than two points, by the
previous remark there is at least one line u ∈ S computing the top Lyapunov exponent.
By Proposition 1.7.18 we then have equality.

An important example of an invariant closed subset S ⊂ P1
C containing more than one

point is the limit set of a discrete faithful representation. We can then specialize the last
corollary in this setting.

Corollary 1.7.23. Let V be a rank 2 flat bundle over a hyperbolic Riemann surface C
corresponding to a faithful discrete representation ρV . If there is a projective structure
(ρV , dev) such that the image of the developing map dev : H→ P1

C is disjoint to the limit
set of ρV , then

λ1 =
2 degpar(Ξh(dev∗(OP1

C
(−1))))

deg(Ω1
C

(log(∆))
.

Here dev∗(OP1
C
(−1)) is an abuse of notation for the line bundle on C defined by the

developing map dev.

1.8 Main equality in the compact case

In this section we show that inequality (1.11) is an equality if the base curve is compact.
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Theorem 1.8.1. Let V be a flat bundle over a compact hyperbolic Riemann surface C.
For every holomorphic subbundle E ⊂ V, it holds

k∑

i=0

λi(VC) =
2 deg(E)

deg(KC)
+ ErrE(u)

for almost any c ∈ C and Lebesgue almost any u ∈
k∧
V∨c .

We will first state some applications of the previous result and then go on with its proof.
The proof of Theorem 1.8.1 is quite technical and is based on finer estimates on the
bad locus. We finally recall the main result of [DD17a] and get as a corollary that the
dynamical degree defined in [DD17a] is the same as our error term if the base curve is
compact.

1.8.1 Applications Thanks to the equality proven in Theorem 1.8.1 we get a better
condition in the case of compact base curves for checking rationality of Lyapunov
exponents than the one given by Proposition 1.7.18.

Corollary 1.8.2. Let V be a flat bundle over a compact hyperbolic Riemann surface C.
If there is a rank k holomorphic subbundle E ⊂ V such that

TEbad(u) = ∅

for a vector u ∈ ∧k V∨ that computes the sum of the top Lyapunov exponents, then

k∑

i=0

λi =
2 deg(E)

deg(KC)
.

Note that the previous corollary can be used for example if one considers the vector
u =

∑n
i=k Vλi ∈

∧k V∨ given by the sum of the last Oseledets spaces. Then only the
emptiness condition TEbad(u) = ∅ has to be checked.

In the rank 2 situation we get a better version of Corollary 1.7.22 in the case of compact
base curve. In this case we know indeed that there is only one line Vλ2 not computing
the top Lyapunov exponent.

Corollary 1.8.3. Let V be a rank 2 flat bundle over a compact hyperbolic Riemann
surface C and E ⊂ V a sub-line bundle. If the complement P1

C \sE(H) of the image of the
corresponding equivariant map sE : H→ P1

C contains more than one point, then

λ1 =
2 deg(E)

deg(KC)
.

Since a rank k holomorphic subbundle of the flat bundle corresponding to a representation
ρ is the same as a ∧kρ-equivariant holomorphic map f : H→ P(

∧k Cn), we get also the
following corollary.

39
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Corollary 1.8.4. Let C be a compact Riemann surface. For any representation of the
fundamental group ρ : π1(C) → GLn(C) and any ∧kρ-equivariant holomorphic map
f : H→ P(

∧k Cn) the error term function

P(
k∧
Cn)∨ → R+, u 7→ Errf (u) = lim

T→∞

1

T

∫ T

0

]{f−1(ker(u)) ∩Dt(z)}
vol(Dt(z))

dt

is Lebesgue almost everywhere constant, for almost all z ∈ H.

1.8.2 Proof of Theorem 1.8.1 We will prove Theorem 1.8.1 by proving that in the
compact base curve case, the E-seminorm can be used to compute Lyapunov exponents
as any other integrable norm. We want to remark that in order to prove that the
E-seminorm is as good as any other integrable norm, one could try the naive approach
via Poincaré recurrence theorem used for proving that any norm computes the same
Lyapunov exponents (see for example [KM16, Lemma 2.6]). The key idea of that approach
is that any two norms are uniformly bounded with respect to each other on a projective
bundle over a compact subset. In this case the bad locus breaks the compactness of the
projective bundle since the E-seminorm is a norm on the complement of the bad locus,
which is not compact.

In order to prove that the E-seminorm can be used to compute Lyapunov exponents, it
suffices as before to only consider the case where E = L is a line bundle. Theorem 1.8.1
is a direct consequence of the following proposition, whose proof will take up the rest of
this section.

Proposition 1.8.5. Let C be compact. Let L ⊂ V be a holomorphic subline bundle. For
almost any c ∈ C and any vector u ∈ V∨c −⊕ni=2V∨λi,c it holds

λ1(V) = lim
t→∞

1

t

1

2π

∫ 2π

0

log ‖Gtrθu‖Ldθ

From now on we will denote the trouble making sets introduced in Definition 1.7.11 as

T := TLbad ⊂ P(V∨), T (u) := TLbad(u) ⊂ H for any u ∈ P(V∨).

Let π : H → C be the universal covering map and π∗(P(V)∨) be the pullback of the
projective bundle associated to V∨. Since V∨ is a flat bundle, the pull-back π∗(P(V∨)) is
isomorphic to the trivial projective bundle. let us fix an isomorphism

ψ : H×P(V∨c )
∼−→ π∗(P(V∨)), (z, u) 7→ uz := ψ(z, u)

for some c ∈ C.

Consider the function

φ : H×P(V∨c ) −→ R≥0 ∪{∞}
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1.8 Main equality in the compact case

(z, u) 7−→ log ||uz||h − log ||uz||L = log

( ||uz||h
||uz||L

)
= log

( ||uz||h||ωz||h
|uz(ωz)|

)

where ω is a local frame of π∗(L). Notice that this function is positive by Cauchy-Schwartz
(see inequality (1.12)).

We denote by φu : H→ R∪{∞} the map φ(−, u), for u ∈ P(V∨c ).

Remark 1.8.6. Recall that the function appearing in the denominator of φ comes from
the norm of the holomorphic function

H×V∨c −→ C, (z, u) 7→ uz(ωz).

The bad locus ψ−1(T ) ⊂ H×P∨(Vc) is its zero locus and the bad locus for the vector
u ∈ P(Vc) is given by the slice T (u) = ψ−1(T ) ∩ (H×{u}).

Let ε > 0 be a positive constant. We define a tubular neighborhood of the bad locus
ψ−1(T ) ⊂ H×P(V∨c ) to be

B(T, ε) := {(z, u) ∈ H×P(V∨c ) : dhyp(z, T (u)) < ε} ⊂ H×P(V∨c )

and the slice
B(T (u), ε) := B(T, ε) ∩ (H×{u}) .

Let B(T, ε){ ⊂ H×P∨(Vc) be the complement of the tubular neighborhood B(T, ε). In
the next lemma we obtain a bound on the behavior of the function φ on B(T, ε) and on
B(T, ε){. The main ingredients used in the proof of the next lemma are the compactness
of the curve and the equivariance property of φ.

Lemma 1.8.7. There exist constants M,N > 0 such that the function φ outside the
tubular neighborhood B(T, ε) satisfies the following bound

||φ|B(T,ε){||∞ ≤M +N | log(ε)|.

Moreover there is a constant M ′ > 0 such that for every u ∈ P(V∨c ) and any w ∈ T (u)
the function φu restricted to the ball Bhyp(w, ε) around w satifies the following bound:

φu(z)|Bhyp(w,ε) ≤M ′ +N
∑

z′∈T (u)∩Bhyp(w,ε)

| log (dhyp(z, z′)) |.

Proof. Let us choose a compact fundamental domain F ⊂ H for C and consider the
restrictions

T|F := ψ−1(T ) ∩ (F × P(V∨c )) ⊂ H×P(V∨c )

and
B(T, ε)|F := B(T, ε) ∩ (F × P(V∨c )) .

Note that if we prove the two claims of the proposition restricting ourselves to the subset
F × P(V∨c ), then we can use the equivariance property

φ(γz, u) = φ(z, ρ(γ−1)u), γ ∈ π1(C, c)
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1 Lyapunov exponents on character varieties

to extend the results to all of the upper half plane since the constants involved in the
expressions are independent of u ∈ P(V∨c ) and since π1(C, c) acts via isometries on H.

The main idea now is considering the holomorphic function of expression (1.8.6) locally
as a power series. Then by a compactness argument we can control the coefficients of
this power series. The main technical problem is that two zeros of this function, which
are the bad points, can collide for some values of u ∈ P(V∨). This has to be taken into
account in order to correctly prove the second statement of the lemma.

Since F × P(V∨c ) is compact, by the Weierstrass preparation theorem we can choose
finitely many points (zj, uj) ∈ T|F and compact neighborhoods of the points (zj, uj) ∈
Uj ⊂ F × P(V∨c ) such that T|F ⊆

⋃m
j=1 Uj and

φ(z, u)|Uj = log

( ||uz||h||ωz||h
|hj(z, u)Pj(z, u)|

)

where the holomorphic functions hj are never zero and the polynomials Pj are given as

Pj(z, u) =

nj−1∑

i=0

ai,j(u)(z − zj)i + (z − zj)nj .

The coefficients ai,j(u) are holomorphic functions with ai,j(uj) = 0 for all i and j. Notice
that T|F ∩ Uj is the zero locus of Pj.

On each Uj we get then the following bound:

φ(z, u)|Uj = log

( ||uz||h||ωz||h
|hj(z, u)|

)
− log |Pj(z, u)| ≤M ′′ − log |Pj(z, u)|

where the constant

M ′′ := max
j=1,...,m

(
max

(z,u)∈Uj
log

( ||uz||h||ωz||h
|hj(z, u)|

))

is well defined since the functions hj are never zero on the compact subsets Uj.

We then rewrite for every (z, u) ∈ Uj the roots decomposition of the polynomial Pj(z, u)
with respect to the variable z to get

φ(z, u)|Uj ≤M ′′ − log |Pj(z, u)| = M ′′ −
nj∑

i=1

log |z − zi,j(u)|

where zi,j(u) ∈ C are possibly equal to each other. Since F ⊂ H is compact, the euclidean
and the hyperbolic distances are comparable to each other. In particular there is a
constant L > 0 such that |x− y| ≥ L · dhyp(x, y) for all x, y ∈ F . Hence we can rewrite
the last inequality as

φ(z, u)|Uj ≤M ′′ −
nj∑

i=1

log |z − zi,j(u)| ≤M ′′ −
nj∑

i=1

log |L · dhyp(z, zi,j(u))|. (1.14)
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If ε is chosen small enough, we can assume that B(T, ε)|F is contained in the union
U :=

⋃m
j=1 Uj . Since (z, u) ∈ B(T, ε){ implies that dhyp(z, zi,j(u)) > ε, we find the bound

||φ|B(T,ε){||∞ ≤M −N log(ε) = M +N | log(ε)|

where
N :=

∑

j=1,...,m

nj, M := max{ max
(z,u)∈Ů{

φ(z, u),M ′′} −N log(L).

Hence the first statement of the proposition is proven.

In order to prove the second statement of the lemma we consider a bad point (w, u) ∈ T|F .
Since ε is small, we can assume that the tubular neighborhood B(T, ε)|F of T|F is contained
in U =

⋃m
j=1 Uj. Moreover, if ε is small enough we can also assume that Uj is a product

Uj = Kj × Vj for Kj ⊂ F and Vj ⊂ P(V∨c ) compact subsets. From now on, for the sake
of a simpler notation we set K := Kj and V := Vj. Moreover we set P := Pj, so that
the bad locus T|F ∩ Uj = Z(P ) is the zero set of P . We will prove the second statement
of the lemma restricting to Uj = K × V . This is sufficient since there are only finitely
many Uj.

We need to prove that for any (w, u) ∈ Z(P ) ⊂ K × V the following bound holds:

φu(z)|Bhyp(w,ε) ≤M ′ +N
∑

z′∈Z(Pu)∩Bhyp(w,ε)

| log (dhyp(z, z′)) |

for some constant M ′. For any (z, u) ∈ K × V we decompose the polynomial P (z, u)
into roots

P (z, u) =
n∏

i=1

(z − zi(u)).

Without loss of generality we can assume that the roots zi : V → C are well-defined
holomorphic functions. Indeed, even if in general they are only multi-valued functions,
there is a finite covering π : V ′ → V such that the pullbacks π∗(zi) : V ′ → C are single
valued functions. If we then can prove the desired bound for these pull-back roots, namely
if for any root (w, v) ∈ Z(π∗(P )) ⊂ K × V ′ it holds

π∗(φ)(z, v)|Bhyp(w,ε) ≤M ′ +N
∑

z′∈Z(π∗(P )v)∩Bhyp(w,ε)

| log (dhyp(z, z′)) |

then it is clear that we get the same bound for the original function. Indeed it is enough
to choose v ∈ π−1(u) for any (w, u) ∈ Z(P ) ⊂ K × V and use the definition of pull-back
π∗(φ)(z, v) = φ(z, π(v)) and π∗(P )v = Pπ(v) to get the original bound.

Since we reduced to the case where P (z, u) =
∏n

i=1(z − zi(u)) and zi : V → C are
holomorphic functions, we can consider the irreducible components of the zero locus
Z(P ) which are now given as graphs

Γi := {(zi(u), u) ∈ K × V : u ∈ V }.
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Let us define the tubular neighborhood around Γi as

B(Γi) := {(z, u) ∈ K × V : dhyp(z, zi(u)) ≤ ε}.

Notice that by inequality (1.14) we have

φ(z, u)|K×V ≤M ′′ −
n∑

i=1

log |L · dhyp(z, zi(u))|.

In order to define a global constant M ′ independent of u ∈ V in the bound that we
are trying to prove, we need to define the maximal compact subset of B(Γi) where the
function log |L · dhyp(z, zk(u))||Bhyp(zi(u),ε) is well define and then take the maximum over
this set for all k 6= i. This set can be defined as the k-th complement

B(Γi)(k) : = {(z, u) ∈ B(Γi) : dhyp(zi(u), zk(u)) ≥ ε}
= {(z, u) ∈ B(Γi) : (zk(u), u) 6∈ B(Γi)}.

The number

M ′
i := max

k 6=i

(
max

(z,u)∈B(Γi)(k)
− log (L · dhyp(z, zk(u)))

)

is well-defined since the sets we are taking the maximum on are compact and the functions
log (L · dhyp(z, zk(u))) are well-defined in these sets. We finally define

M ′ := N ·max
i
M ′

i +M ′′ −N log(L).

Then by rewriting once again inequality (1.14) and using the definition of M ′ we find
that for every i ∈ {1, . . . , n} it holds

φ(z, u)|B(γi) ≤M ′ −
∑

zk(u)∈Bhyp(zi(u),ε)

log (dhyp(z, zk(u)))

≤M ′ +N
∑

zk(u)∈Bhyp(zi(u),ε)

|log (dhyp(z, zk(u)))|

where we added the constant N > 0 in the second inequality because in the second claim
of the proposition we are summing over the bad points not taking multiplicities into
account. The second claim of the proposition is then proven.

Remark 1.8.8. The positive constant N > 0 of the previous lemma gives a uniform bound
of the number of bad points in any compact fundamental domain for a compact curve C.
In the case of a non compact curve, it is unclear if such a uniform bound exists. Notice
that there is an an alternative way of proving that the number of bad points is uniformly
bounded, without using the Weierstrass preparation theorem. Indeed consider the map

P(V∨)→ R, u 7→
∫

H
χ̃F (z)χT (u)(z)
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where χ̃F (z) is the smoothened characteristic function of a compact fundamental domain
F ⊂ H and χT (u)(z) is the characteristic function of the set T (u). This map is continuous
and so it is bounded. The bound is independent of the choice of fundamental domain by
the equivariance property

χT (u)(γ(z)) = χT (ρ(γ−1)u)(z), for any γ ∈ π1(C, c).

Using the bounds of the last lemma, we now prove Proposition 1.8.5 which, as we already
noticed, implies Theorem 1.8.1. The main strategy is to separate the study of the integral
of the seminorm near and far from the bad points.

Proof of Proposition 1.8.5. Let us choose u ∈ V∨ that computes the Lyapunov exponent,
meaning that

λ1(V) = lim
t→∞

1

t

1

2π

∫ 2π

0

log ||ugtrθ(z0)||hdθ

where z0 ∈ T 1 H is the base point of u. Let ε′ > 0 and fix t >> 0. Set ε = ε(t) := e−tε
′ .

By abuse of notation, we will not distinguish a point in T 1 H from its base point in H.
We define now

S(t)near := {θ ∈ [0, 2π] : gtrθ(z0) ∈ B(T (u), ε)}
and S(t)far := [0, 2π]− S(t)near.

We want to prove that the difference between the norm and the seminorm

1

t

∫ 2π

0

log

( ||ugtrθ(z0)||h
||ugtrθ(z0)||L

)
dθ =

1

t

∫ 2π

0

φ(gtrθ(z0), u)dθ

=
1

t

(∫

S(t)near

φ(gtrθ(z0), u)dθ +

∫

S(t)far

φ(gtrθ(z0), u)dθ

)

tends to zero.

We treat first the integral near the bad locus. Define the hyperbolic annulus

A(t, ε) := {z ∈ H : t− ε ≤ dhyp(z, z0) ≤ t+ ε}

and for any w ∈ H define the arc portion

Ct(w, ε) := {θ ∈ [0, 2π] : gtrθ(z0) ∈ Bhyp(w, ε)}.

It follows from the above definitions and from the second statement of Lemma 1.8.7 that
∫

S(t)near

φ(gtrθ(z0), u)dθ ≤
∑

w∈T (u)∩A(t,ε)

∫

Ct(w,ε)

φ(gtrθ(z0), u)dθ

≤
∑

w∈T (u)∩A(t,ε)

M ′
∫

Ct(w,ε)

dθ+

∑

w∈T (u)∩A(t,ε)

N
∑

z′∈T (u)∩Bhyp(w,ε)

∫

Ct(w,ε)

|log (dhyp(gtrθ(z0), z′))| dθ
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1 Lyapunov exponents on character varieties

≤
∑

w∈T (u)∩A(t,ε)

M ′
∫

Ct(w,ε)

dθ+

∑

w∈T (u)∩A(t,ε)

N2 max
z′∈Bhyp(w,ε)

(∫

Ct(w,ε)

|log(dhyp(gtrθ(z0), z′))| dθ
)
.

where the last inequality follows since we can assume that Bhyp(w, ε) is small enough to
be contained in a fundamental domain and N is the the uniform bound for number of
bad points in a fundamental domain.

z0

t

A(t, ε)

w
Ct(w, ε)

z′

First of all notice that ∫

Ct(w,ε)

dθ ≤ sinh(ε)

sinh(t)
=: θ(ε, t)

since the measure of the angle Ct(w, ε) is the same as the quotient of the hyperbolic
length of the arc that the angle defines and the hyperbolic length of the circumference
St(z0). It is moreover clear that the hyperbolic length of the arc defined by Ct(w, ε) is
less than the length of the circumference ∂Bhyp(w, ε).

We hence get the following bound:
∫

S(t)near

φ(gtrθ(z0), u)dθ ≤M ′ · ]{T (u) ∩ A(t, ε)} · θ(ε, t)+

+N2 · ]{T (u) ∩ A(t, ε)} · max
w∈A(t,ε)

(
max

z′∈Bhyp(w,ε)

∫

Ct(w,ε)

|log(dhyp(gtrθ(z0), z′))| dθ
)
.

In order to bound the second summand, we notice that this term is invariant under
isometries. Hence we can work in the Poincaré disk D and we can assume that the
starting point is z0 = (0, (1, 0)) ∈ T 1D, namely the center together with the horizontal
direction. Moreover, since the term

max
z′∈Bhyp(w,ε)

(∫

Ct(w,ε)

|log(dhyp(gtrθ(z0), z′))| dθ
)
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is invariant under rotation, we can assume that w is on the horizontal ray

w ∈ R := A(t, ε) ∩ [0, 1] = [tanh(t− ε), tanh(t+ ε)].

We define the tubular neighborhood of the ray as

U :=
⋃

r∈[t−ε,t+ε]

Bhyp(tanh(r/2), ε).

We then get the following bound:

max
w∈R

(
max

z′∈Bhyp(w,ε)

(∫

Ct(w,ε)

|log(dhyp(gtrθ(z0), z′))| dθ
))

≤ max
z′∈U

(∫ θ(ε,t)
2

− θ(ε,t)
2

∣∣log dhyp(tanh(t/2)eiθ, z′)
∣∣ dθ
)

≤ max
z′∈R

(∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, z′)
∣∣ dθ
)

where the last inequality follows again by rotational invariance (up to enlarging the angle
of integration we can assume that z′ is on the ray that cuts the angle in two equal parts
and then we can rotate to have z′ ∈ R). Notice now that

max
z′∈R

(∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, z′)
∣∣ dθ
)

≤
∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, R)
∣∣ dθ

where by definition

dhyp(tanh(t/2)eiθ, R) := inf
z′∈R

dhyp(tanh(t/2)eiθ, z′).

Using the hyperbolic sine rule we get

dhyp(tanh(t/2)eiθ, R) = sinh−1(sinh(tanh(t/2)) · sin(θ)) = θ + o(θ)

where the little-o notation is with respect to t going to infinity (hence θ = θ(t) going to
zero). We finally can then rewrite

∫ θ(ε,t)

−θ(ε,t)

∣∣log dhyp(tanh(t/2)eiθ, R)
∣∣ dθ = 2

∫ θ(ε,t)

0

|log θ| dθ + o(θ(ε, t))

= |2θ(ε, t) log (θ(ε, t))− 2θ(ε, t)|+ o(θ(ε, t)) ∼ log(θ(ε, t))θ(ε, t) ∼ t(ε′ + 1)

et(ε′+1)
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1 Lyapunov exponents on character varieties

where the last asymptotic follows from the definition

θ(ε, t) :=
sinh(ε)

sinh(t)
=

sinh(e−tε
′
)

sinh(t)

and from the fact that for large t large the function sinh(t) is asymptotic to et and for ε
small sinh(ε) is asymptotic ε.

Putting together all the inequalities we showed that

lim
t→∞

1

t

∫

S(t)near

φ(gtrθ(z0), u)dθ ≤ lim inf
t→∞

1

t
]{T (u) ∩ A(t, ε)} · t(ε

′ + 1)

et(ε′+1)

≤ lim inf
t→∞

]{T (u) ∩Dt+ε(z0)} · ε
′ + 1

et(ε′+1)
.

By Theorem 1.7.13, we know that the limit defining the error term converge:

lim
T→∞

1

T

∫ T

0

]{T (u) ∩Dt+ε(z0)}
vol(Dt+ε(z0))

dt = lim
T→∞

1

T

∫ T

0

]{T (u) ∩Dt+ε(z0)}
4π sinh2((t+ ε)/2)

dt <∞.

This implies that

lim inf
t→∞

]{T (u) ∩Dt+ε(z0)} · (ε′ + 1)

et(ε′+1)
= 0.

Indeed if this is not the case then there is a constant c > 0 and t′ such that for all t > t′

it holds ]{T (u) ∩Dt+ε(z0)} > c · (et(ε′+1)/(ε′ + 1)) which implies the contradiction

lim
T→∞

1

T

∫ T

t′

]{T (u) ∩Dt+ε(z0)}
4π sinh2((t+ ε)/2)

dt > lim
T→∞

1

T

∫ T

t′

c · (et(ε′+1)/(ε′ + 1))

4π sinh2((t+ ε)/2)
dt =∞.

Using the first statement of Lemma 1.8.7 we can compute a bound of the integral over
the points which are not near T (u):

lim
t→∞

1

t

∫

S(t)far

φ(gtrθ(z0), u)dθ ≤ lim
t→∞

2π

t
(M −N(log(ε)) = 2πNε′.

By letting ε′ tend to zero, we finally get

λ1(V) = lim
T→∞

1

T

1

2π

∫ 2π

0

log ‖GT rθu‖Ldθ

and Proposition 1.8.5 is proven.
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1.8.3 Harmonic measures and Brownian motion In this section we compare Theorem
1.8.1 to the main results of [DD17b] and [DD17a]. We will describe how in the case of
compact base curve Theorem 1.8.1 can be used to identify the dynamical degree defined
in [DD17a] with our error term, which in turn can be viewed as a generalization of the
asymptotic covering degree of developing maps defined in [DD17b].

In [DD15] and [DD17b], Deroin and Dujardin defined the Lyapunov exponents associated
to holonomies of parabolic projective structure on hyperbolic surfaces in the context of
Brownian motion. The definition of Lyapunov exponents in this context is essentially
the same as our definition provided by Oseledets multiplicative ergodic theorem, but
the cocycle is defined over the Brownian motion on the Riemann surface instead of
on the geodesic flow. The two definitions of Lyapunov exponents provide the same
numbers since the Brownian motion tracks the geodesic flow sublinearly on hyperbolic
Riemann surfaces (see [Anc90]). In [DD15] it was proven the main equality of Theorem
1.8.1 in the specific case of rank 2 representations given as holonomies of projective
structures inducing the same holomorphic structure of the base curve. In Proposition
1.5.1 we identified the locus of such representations with the oper locus if the base curve
is compact. The error term was identified with the asymptotic covering degree of the
developing map of the projective structure (the different constants appearing are due to
a different normalization of the hyperbolic metric). Our error term is a generalization
of this asymptotic degree (see Proposition 1.12.4 for a specific comparison in rank two).
Notice however that the equality proven in [DD15] is more general than ours since it
works for parabolic representations over non compact curves and since in the error term
they do not need the integral defining the mean of the counting function since they can
prove that the counting function converges.

In [DD17a], Daniel and Deroin generalized the definition of Lyapunov exponents in the
context of Brownian motion on Kähler manifolds. The result they provide is analogous
to the main equality of Theorem 1.8.1, where the error term is called dynamical degree.
Recall that a measure ν on the projective bundle associated to a flat bundle V is called
harmonic if it is invariant under the heat semigroup action. The dynamical degree
associated to a sub-vector bundle E ⊂ V is defined as the intersection number

δE := Tν ∩ [P(E)]

where Tν is the harmonic current associated to ν.

Corollary 1.8.9. Over a compact Riemann surface, the error term and the dynamical
degree coincide

δE = ErrE(u)

for Lebesgue almost all u ∈ ∧k V∨.

Proof. As recalled above, the Lyapunov exponents defined in the context of Brownian
motion and the one defined for the geodesic flow coincide on a hyperbolic curve. The
result then follows by comparing the equality of Theorem 1.8.1 and the formula in [DD17a,
Theorem 5].

49



1 Lyapunov exponents on character varieties

Notice that the error term, contrary to the dynamical degree, can in principle be
approximated with computer experiments.

Recall that Gt : V → V is the lift via parallel transport of the geodesic flow over T 1C.
The main theorem of [BEW17] in our setting implies that if the flat bundle VC over
T 1C is irreducible, then there exists a measure ν on the projective bundle P(VC) that is
Gt-invariant, projects to the hyperbolic measure on the base and it is fiberwise supported
on the projectivization P(Vλ1) of the first Oseledets subspace. Using an abuse of notation
we call ν the corresponding measure on the wedge products P

(∧k VC
)

if they are
irreducible.
The property of our error term to be Lebesgue almost everywhere constant differentiate
our result to the one in [DD17a]. If we allow ourselves to consider an error term which
is almost everywhere constant with respect to a Gt-invariant measure ν, we are able to
more easily show a weaker version of Theorem 1.8.1 equivalent to the result of [DD17a].

Proposition 1.8.10. Let VC be a flat bundle such that
∧k VC is irreducible. For any

holomorphic subbundle E ⊂ VC of rank k, if
∫

P(V∨)

log

( ||u||L
||u||h

)
dν(u) <∞

then
k∑

i=0

λi =
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u)

for ν-almost any u ∈ P
(∧k V∨

)
.

If the base curve is compact, the integrability assumption holds.

Proof of Proposition 1.8.10. As in the proof of Theorem 1.7.13, it is enough to prove
the result for the top Lyapunov exponent and consider the case where E = L is a line
bundle. Since the measure ν is fiberwise supported on the first Oseledets space, the top
Lyapunov exponent of V is given ny

λ1 = lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||h
||u||h

)
dν(u)

where h is an integrable norm. Integrating inequality (1.11) over P(V∨) with respect to
the measure ν and rewriting backwards the equalities of the proof of Theorem 1.7.13, we
find

λ1 ≥
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+

∫

P(V∨)

ErrE(u)dν(u) = lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u)

where || · ||L is the L-seminorm defined in (1.8). We finally compute

λ1 −
(

2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+

∫

P(V∨)

ErrE(u)dν(u)

)
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= lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||h
||u||h

)
dν(u)− lim

t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u)

= lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||h · ||u||L
||Gtu||L · ||u||h

)
dν(u).

Since by assumption
∫
P(V∨)

log
(
||u||L
||u||h

)
dν(u) <∞, we can split the integral

∫

P(V∨)

log

( ||Gtu||h · ||u||L
||Gtu||L · ||u||h

)
dν(u) =

=

∫

P(V∨)

log

( ||Gtu||h
||Gtu||L

)
dν(u)−

∫

P(V∨)

log

( ||u||h
||u||L

)
dν(u) = 0

where the last equality follows from the Gt-invariance of the measure ν. We have then
proved that

λ1 =

(
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+

∫

P(V∨)

ErrE(u)dν(u)

)
=

= lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u).

In order to prove that the function ErrE(u) is ν-almost everywhere constant notice that
the function

P(V∨) −→ R, u 7→ log

( ||G1u||L
||u||L

)

is ν-integrable since

λ1 = lim
t→∞

1

t

∫

P(V∨)

log

( ||Gtu||L
||u||L

)
dν(u) =

∫

P(V∨)

log

( ||G1u||L
||u||L

)
dν(u)

where the second equality comes from the Gt-invariance of ν. Then applying the Birkhoff
ergodic theorem to this function and the measure ν, it follows that for ν-almost any
u ∈ P(V∨):

lim
t→∞

1

t
log

( ||Gtu||L
||u||L

)
=

∫

P(V∨)

log

( ||G1u||L
||u||L

)
dν(u) = λ1.

Hence we finally get for ν-almost any u ∈ P(V∨):

λ1 = lim
t→∞

1

t
log

( ||Gtu||L
||u||L

)
=

2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u).

The second claim of the proposition about the integrability condition in the compact
case can be showed using Lemma 1.8.7 and arguing in an analogous way as in the proof
of Proposition 1.8.5.
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1.9 Lyapunov exponents on Shatz strata

Let C be a compact Riemann surface. Recall that the Shatz stratification is the
stratification ofM(n)

DR(C) given by Harder-Narasimhan type, namely by slopes of maximal
subbundles. The Harder-Narasimhan type provide then a natural bound for the sum of
Lyapunov exponents.

The bound on the Lyapunov exponent functions on the minimal stratum defined by
semistable bundles is trivial, since there the Harder-Narasimhan filtration is trivial.
Notice that all Lyapunov exponent functions restricted to the closed subset of this
stratum given by the unitary locus are zeros.

On the maximal stratum, which by Theorem 1.3.12 is the oper locus Opn(C), we have the
maximal possible bound of the Lyapunov exponent functions. We can actually compute
the bound, since we know the Harder-Narashiman type of an oper.

Proposition 1.9.1. If V ∈ Opn(C) is in the oper locus then

k∑

i=1

λi(V) ≥ k(n− k), k = 1, . . . , n,

with equality in the case of the only variation of Hodge structures point, given by the
(n− 1)-th symmetric power of the maximal Higgs one in rank 2.

Proof. Using Theorem 1.7.10 we see that the Lyapunov spectrum dominates the Harder-
Narasimhan type. By Theorem 1.3.12 we know that the Harder-Narasimhan filtration of
an oper is the oper filtration itself. Using Proposition 1.3.13 and arguing inductively we
can compute the slopes of the subbundles Vk defining the oper filtration. We see then
that

deg(Vk) = k(n− k).

To prove equality in the only variation of Hodge structures point (see Proposition 1.3.15)
notice that in the rank 2 case the uniformizing variation of Hodge strucure is of weight
one. Hence by Theorem 1.11.2 we can compute the top Lyapunov exponent, which is 1.
Now it is enough to compute how Lyapunov exponents change under symmetric power
and check that we get indeed the equality.

Now that we have proved a lower bound for the sum of Lyapunov exponents of Shatz
strata, it is natural to ask if the Lyapunov exponent functions are unbounded on these
strata. Using the recent result of Dujardin and Favre [DF18] about the growth of
Lyapunov exponents for meromorphic families, we are able to show the following result
for the maximal stratum.

Theorem 1.9.2. The top Lyapunov exponent function is unbounded on the maximal
Shatz stratum, the oper locus, with logarithmic growth near the boundary of the character
variety.
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Proof. First of all note that the character variety and the de Rham moduli space are
biholomorphic, hence by Theorem 1.3.12 the oper locus, being the maximal Shatz stratum,
is a closed embedded subset of the character variety. Now recall that by Proposition
1.3.11 each connected component of the oper locus in rank n is biholomorphic to the
Hitchin base

⊕n
j=2 H0(C;KjC).

By the result of [DF18], a meromorphic family from the unit disk to the space of non-
elementary representations in the character variety in rank 2 which is holomorphic outside
of zero and cannot be holomorphically extended in 0 yields a logarithmic growth of the
Lyapunov exponent near zero. A connected component of the oper locus in rank 2 is
given by the properly embedded vector space H0(C;K2

C) in the character variety and
does not intersect the space of elementary representations. Since on a complex vector
space there are a lot of meromorphic maps from the disk D→ H0(C;K2

C) holomorphic
in D \ {0} and not holomorphic in zero, we have shown that the Lyapunov exponent
function is unbounded in rank 2. To generalize the result to any rank it is enough
to recall that, by Proposition 1.3.10, each component of the oper locus parametrizes
the space of holomorphic connections on a fixed holomorphic vector bundle. Since the
rank n oper locus Opn(C) contains the (n − 1)-symmetric power of the uniformizing
representation, it is clear that the (n − 1)-symmetric power of any representation in
Op2(C) is contained in Opn(C). Indeed the symmetric power of a representation in
Op2(C) defines a holomorphic connection on the holomorphic vector bundle given as the
symmetric power of the vector bundle underlying the uniformizing representation. Since
the top Lyapunov exponent of the n-symmetric power of a representation ρ is n× λ1(ρ),
the result in rank 2 implies the genral result for any rank.

1.10 Top Lyapunov exponent on Hitchin components

Let C be a compact Riemann surface. Recall that Hitchin components are connected
components of the real character variety Hom(π1(C), SLn(R))// SLn(R) containing sym-
metric powers of Fuchsian representations (see Section 1.6.2). In particular the Hitchin
component in rank 2 is Teichmüller space T (C).

As recalled in Section 1.6.3 there have been lately a focus on the study of dynamical
invariants on Hitchin components. Recall for example the main result of [PS17] that
gives a bound of the critical exponent on Hitchin components that is attained if and
only if the representation is the symmetric power of a Fuchsian representation. Unlike
for critical exponent, we still cannot prove a lower bound for the top Lyapunov expo-
nent function on Hitchin components. We performed computer experiments computing
the top Lyapunov exponent on the Hitchin component of rank three character variety
Hom(∆(3, 3, 4), SL3(R))// SL3(R) associated to the triangle group ∆(3, 3, 4). We were
able to perform experiments thanks to the explicit description of matrices in the Hitchin
components given in [LRT11]. The experiments indicated that as shown above the top
Lyapunov exponent function grows logarithmically near the boundary of the character
variety and moreover this function is greater than 2 on this family, where 2 here repre-
sents the top Lyapunov exponent of the second symmetric power of the uniformizing
representation. Relating critical exponent and top Lyapunov exponent as suggested in
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Section 1.6.4, together with the main result of [PS17] could lead to prove a lower bound
for the top Lyapunov exponent function on Hitchin components. Even tough such a
bound has still to be proven and investigated, we want to state the following conjecture,
which should be analogous to the bound of the critical exponent recalled above.

Conjecture 1. The top lyapunov exponent function on the n-th Hitchin component is
greater or equal than n − 1, which is the top Lyapunov exponent of the (n − 1)-th
symmetric power of the uniformizing representation.

It is not clear to expect if, as for the critical exponent, the attainment of the bound
would imply that the representation is the symmetric power of the uniformizing one.

For representation which are maximal, namely that reach the Milnor-Wood inequality
(see Section 1.6.2), there are not many results. The first and easiest instance to consider
is a maximal SU(p, q)-representation which is also a variation of Hodge structure. For
example, for weight 1 and real K3 representation the Milnor-Wood inequality is attained
if and only if the Arakelov inequality is attained (see Remark 1.6.2). In the case of a
maximal variation of Hodge structure of weight 1, by Theorem 1.11.2 the sum of the
first q = rk(H1,0)-Lyapunov exponent is equal to q and the top Lyapunov exponent is
one (the last result follows from the characterization of maximal weight one VHS given
in [VZ04]). In the case of a maximal variation of Hodge structure of real K3 type, by
Theorem 1.11.3 the top Lyapunov exponent is p/2 = 1. It is still not known if for general
maximal representations the Lyapunov exponent functions any bounds hold.

1.11 Lyapunov exponents for variations of Hodge structures

In this section we focus on variation of Hodge structures over a hyperbolic Riemann
surface C not necessarily compact. We denote by ∆ the cusps of C. Recall that a variation
of Hodge structure is a special flat bundle equipped with the Hodge filtration and an
indefinite Hermitian form H (see definition 1.2.1). Recall also that the Hodge norm
coming from the Hodge metric h defined by the hermitian form H on VC is admissible
(see [EKMZ18, Prop. 3.1]).

First of all we will use the condition given by Proposition 1.7.18 to prove results about
rationality of Lyapunov exponents for variations of Hodge structures in low weight and
describe what is known in these situations. More specifically, we will prove a slightly
generalized version of the results of [EKZ11] and [Fil14] about equality of Lyapunov
exponents and degrees of Hodge bundles in the weight 1 and in the real weight 2 variation
of Hodge structures case. The core of the arguments of the proofs that we present are
similar as the one in the original proofs of the papers cited above or the ones of the most
recent paper [DD17a]. The main idea is to relate the Lyapunov exponents to properties
of the period maps. In particular, we will use that the image of the period map cannot
contain the point corresponding to some Oseledets spaces in the two cases of weight 1
and real weight 2 variation of Hodge structures.
We then concentrate on the number of zero exponents of a general variation of Hodge
structures over a compact base curve. Using Simpson correspondence, we will classify
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unitary representations as VHS with trivial Lyapunov spectrum and deduce from the
proof of this last statement a simplicity result for non-unitary VHS. We finally use
geometric Oseledets theorem to get a lower bound on the number on zero exponent for a
general VHS.

In the case of variation of Hodge structures we can use the Hodge norm to get results
about the Lyapunov spectrum thanks to the next well-known proposition.

Proposition 1.11.1. The Oseledets subspace Vλi are totally isotropic with respect to the
∇-flat indefinite hermitian form H unless λi = 0 and they are pairwise orthogonal unless
λi = −λj.

We recall the proof of this statement, which can be found for example in [KM16].

Proof. Let K be a positive measure compact subset of T 1C, let tk be a sequence going
to infinity such that gtk(c) ∈ K for tk → ±∞ and for almost all c ∈ T 1C. The existence
of the sequence is justified by Poincaré recurrence theorem. Let ui ∈ Vλi . Then by
Gt-invariance of H and by the Cauchy-Schwartz inequality we get

H(ui, uj) = H(gtkui, gtkuj) ≤ c(K)||gtkui||H ||gtkuj||H ∼ e(λi+λj)·tk

where c(K) > 0 is a positive constant depending only on K. Since e(λi+λj)·tk → 0 for
λi 6= λj and for tk →∞ or tk → −∞, we get the result.

1.11.1 Weight 1 variation of Hodge structures Recall that a weight 1 complex
variation of Hodge structure of rank n over C is given by a flat vector bundle H of rank
n together with a holomorphic subbundle H1,0 ⊂ H of rank k and a ∇-flat hermitian
complex form H on H that is positive definite on H1,0 and negative definite on H/H1,0.

We can reprove the result of [EKZ11] in the case of complex weight 1 variation of Hodge
structures over hyperbolic curves.

Theorem 1.11.2. If H is a weight 1 complex variation of Hodge structures of rank n
with rk(H1,0) = k over C, then

k∑

i=1

λi =
2 degpar(Ξh(H1,0))

deg(Ω1
C

(log(∆))

Proof. We want to use Proposition 1.7.18 and prove that for any vector u of the Gt-
invariant closed subspace S ⊂ P(

∧kH∨) given by totally isotropic (n− k)-planes the bad
locus Tbad

H1,0

(u) is empty. This locus is Gt-invariant because the indefinite metric H is
Gt-invariant. Moreover, we need to prove that there is a totally isotropic (n− k)-plane
computing the top k-Lyapunov exponents.
Assume that k ≥ n− k. In order to prove that the bad locus Tbad

H1,0

(u) is empty, notice
that the image of the period map

sH1,0 : H→ P

(
k∧
Hc

)
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1 Lyapunov exponents on character varieties

is contained in the space of positive definite k-planes since H is positive definite on H1,0.
Hence every k-plane sH1,0(z) has to intersect trivially any totally isotropic (n− k)-plane,
which means by condition (1.13) that the bad locus is empty for any u ∈ S. We now only
need to find a totally isotropic (n− k)-plane computing the top Lyapunov exponents.
Since k ≥ n− k and the Hermitian form H has signature (k, n− k), using Proposition
1.11.1 it is easy to see that there is a totally isotropic (n − k)-plane contained in the
positive Oseledets space V≥0. By definition of the Osedelec space this plane computes
the sum of the top k Lyapunov exponents.

If k ≤ n− k we consider the complex conjugate variation of Hodge structure. It has the
same Lyapunov exponent and now the complex conjugate of the bundle H0,1 := H/H1,0

is a holomorphic subbundle with degree equal to deg(H0,1) = − deg(H1,0). Now we can
use the first part of the proof

k∑

i=1

λi = −
n−k∑

i=1

λi = −2 degpar(Ξh(H0,1))

deg(Ω1
C

(log(∆))
=

2 degpar(Ξh(H1,0))

deg(Ω1
C

(log(∆))
.

Notice that as a corollary of the last theorem we get back the first part of the statement
of Proposition 1.3.19, namely that H1,0 is the maximal degree subbundle among all the
subbundles of H.

We want to conclude by recalling that in the case of a weight one variation of Hodge
structures corresponding to a maximal representation, we can say something more on the
Lyapunov spectrum. Indeed as explained in Remark 1.6.2, in this case the Milnor-Wood
inequality is the same as the Arakelov inequality. In [VZ04], weight one VHS attaining
the Arakelov inequality were classified. If the base curve is not compact, the VHS is given
as the direct sum of a unitary part and the direct sum of the uniformizing representations.
The Lyapunov spectrum is then degenerate, namely given only by rk(H1,0)-ones and by
zeroes. Moreover in this case the base curve is a Shimura curve in the moduli space of
abelian varieties. It would be really interesting to understand if the other implication
holds, namely to investigate if the degenereteness of the Lyapunov spectrum in the case
of non-compact base curve implies that the curve is a Shimura curve. If the base curve
is not compact, the characterization of [VZ04] does not help to understand better the
Lyapunov spectrum. However, by maximality we at least know that the sum of the first
rk(H1,0)-exponents is equal to rk(H1,0).

1.11.2 Real variations of Hodge structures of K3 type A weight 2 real variation of
Hodge structures over C is given by a real vector bundle HR over C such that its base
change to C defines a complex variation of Hodge structures H. Let F 2 = H2,0 ⊂ F 1 ⊂ H
be the Hodge filtration and note that F 2 = H0,2 := H/F 1. Recall that by definition
there is a ∇-flat hermitian complex form H on H which is positive definite on H2,0 and
H0,2, and negative definite on H1,1 := F 1/H2,0. Let n := rk(H) and k := rk(H2,0).
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1.11 Lyapunov exponents for variations of Hodge structures

Recall first of all that in the case of real variations of Hodge structures of weight 2, by
the geometric Oseledets theorem, and more specifically by Remark 1.6.12, there are at
least n− 4k zero Lyapunov exponents. Hence the Lyapunov spectrum takes the form

λ1, . . . , λ2k, 0, · · · , 0,−λ2k, . . . ,−λ1.

In [Fil14], it is proven that for a real variation of Hodge structures of weight 2 of K3 type,
i.e. for k = 1, the bound of Theorem 1.7.10 is an equality for the top Lyapunov exponent
when we use the holomorphic sub-line bundle E = H2,0. We can prove a generalization
of this result for any weight 2 real variation of Hodge structures using Proposition 1.7.18.
The idea of the proof was suggested by Simion Filip.

Theorem 1.11.3. Let H be a flat vector bundle of rank n corresponding to a real
variation of Hodge structures of weight two. Let k := rk(H2,0). Then

k∑

i=1

λi =
2 degpar(Ξh(H2,0))

deg(Ω1
C

(log(∆))
.

Proof. We will use a simple trick, namely we will compute the sum of the first (n− k)-
exponents, which is equal to the sum of the first k-exponents, using the holomorphic
subbundle F 1, which has the same degree as H2,0 since the VHS is real. Summarizing,
we will prove

k∑

i=1

λi =
n−k∑

i=1

λi =
2 degpar(Ξh(F

1))

deg(Ω1
C

(log(∆))
=

2 degpar(Ξh(H2,0))

deg(Ω1
C

(log(∆))
.

As in the proof of weight one case we want to use Proposition 1.7.18. Hence we will
prove that for any vector u in the Gt-invariant subset S ⊂ P(

∧n−kH∨) given by real
isotropic k-planes, the bad locus Tbad

F 1

(u) is empty. Moreover we will prove that there
is one hyperplane in S computing the top Lyapunov exponent.
First of all we check that all (n− k)-planes in the image of the period map

sF 1 : H→ P(
n−k∧
Hc)

do not intersect any k-plane in S . Assume by contradiction that for some z ∈ H,
the (n − k)-plane sF 1(z) intersects non-trivially a real isotropic k-plane in a non-zero
vector v. Since the plane is real, the vector v has to belong to the H(1,1) part of F 1,
which is negative definite. Hence we get a contradiction, since there cannot be isotropic
vectors in a negative definite vector space. Finally, by Proposition 1.11.1, the Oseledets
space u =

∑k
i=1 Vλi is a totally isotropic real k-plane. By definition u computes the top

Lyapunov exponent.

Notice that as a corollary of the last theorem we get a similar statement as the one of
Proposition 1.3.19.
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1 Lyapunov exponents on character varieties

Corollary 1.11.4. Let H be a flat vector bundle corresponding to a real variation of
Hodge structures of weight two. Then for any subbundle E ⊂ H with rk(E) ≤ rk(H2,0) it
holds

deg(E) ≤ deg(H2,0).

Recall finally that in the special case of a real K3 VHS corresponding to a maximal
representation, the top Lyapunov exponent is 2, since the Milnor-Wood inequality is the
same as the Arakelov inequality (see Remark 1.6.2). Moreover, by the results of [STZ03]
we know that this is the case if and only if the variation of Hodge structures comes from
the Kummer construction applied to the product of two isogenous modular elliptic curve.
This in particular means that the base curve is a Shimura curve in the moduli space of
K3 surfaces, which is the same as the period domain of variation of Hodge structures of
real K3 type.

1.11.3 Zero exponents and simplicity results for variation of Hodge structures.
First of all, using the geometric Oseledets theorem (Theorem 1.6.11) we can give a bound
on the number of zeroes of variation of Hodge structures.

Proposition 1.11.5. Let (V ,∇) be a rank n irreducible complex variation of Hodge
structures of weight k with Hodge filtration (F i). Let p =

∑
i≡0(2) rk (F i/F i+1) be the

rank of the even part of V. Then there are at least |n− 2p| zero Lyapunov exponents.

Proof. By definition of complex variation of Hodge structures, the monodromy represen-
tation has values in SU(p, n− p). By the geometric Oseledec theorem and in particular
by Remark 1.6.12 where the SU(p, q) case is discussed, there are at least |n− 2p| zero
Lyapunov exponents.

We now prove that for a variation of Hodge structure over a compact curve, triviality of
the Lyapunov spectrum is equivalent to having weight 0, which means corresponding to
a unitary representation.

Proposition 1.11.6. Let (V ,∇) be a rank n irreducible varation of Hodge structure.
Then the following are equivalent:

1. V is a variation of Hodge structures of weight zero.

2. the corresponding monodromy representation is unitary.

3. V is stable.

Moreover the conditions of above are equivalent to have trivial Lyapunov spectrum.

Proof. Recall that by the result of Narasimhan-Seshadri (Theorem 1.3.8), the locus of
unitary representations corresponds to the locus of stable vector bundles V equipped
with the harmonic metric connection or, by Simpson correspondence, to the locus of
Higgs bundles with zero Higgs field. If a variation of Hodge structures is of weight zero,
then the Griffiths filtration is trivial and so the associated system of Hodge bundles
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1.11 Lyapunov exponents for variations of Hodge structures

has zero Higgs field. So the associated representation is unitary. Moreover, again by
Narasimhan-Seshadri’s result, if the associated representation is unitary, then V is stable.
We will prove now that stability implies weight zero. Assume by contradiction that the
weight is bigger than zero, so that we have a non-trivial filtration

F k+1 = 0 ⊂ · · · ⊂ F 0 = V

corresponding to the system of Hodge bundles

(GrF (V) =
⊕

p

Vp,n−p,∇gr), Vp,n−p := F p/F p+1.

By Griffiths transversality condition, (V0,n,∇gr
|V0,n = 0) ⊂ (GrF (V),∇gr) is a sub-Higgs

bundle, and so by semistability of Higgs bundles inM(n)
H (C), we have that µ(V0,n) ≤

µ(GrF (V)) = 0. Since deg(GrF (V)) =
∑

p deg(Vp,n−p), it follows that

deg(V0,n) = − deg(
⊕

p 6=0

Vp,n−p) = − deg(F 1) ≤ 0.

So we have found that deg(F 1) ≥ 0 = µ(V) which is impossible by the stability of V .
We prove now the last statement of the proposition. We know that a unitary representation
has trivial Lyapunov spectrum since in this case the norm used to compute the Lyapunov
exponent is invariant under parallel transport. Conversely, if the Lyapunov spectrum
is zero then, since F 1 ⊂ V is a holomorphic subbundle, we have that 0 =

∑rk(F1)
i=1 λi ≥

deg(F 1) by Theorem 1.7.10. But as we already saw, if the weight is positive then it holds
also 0 ≤ deg(F 1). If F 1 has zero degree then it defines a flat subbundle, contradicting
the hypothesis of irreducibility of V .

From the last Theorem we get a direct corollary about the sum of the first rk(F1)
Lyapunov exponents of a positive weight variation of Hodge structures.

Corollary 1.11.7. Let (V ,∇) be a rank n irreducible variation of Hodge structures of
positive weight. Then the the sum of the first rk(F 1) Lyapunov exponents is positive and
the following non-trivial bound holds:

rk(F1)∑

i=1

λi(V) ≥ deg(F 1) = deg(Vn,0) > 0.

Proof. From the proof of the last Theorem we see that if the weight is positive and the
variation of Hodge structures is irreducible then the degree of F 1 is strictly positive.
Hence the bound (1.7) gives the result.
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1 Lyapunov exponents on character varieties

1.12 Lyapunov exponent function in rank two

From now on we will return to consider only the case of a compact Riemann surface
C, since we want to deal with the moduli spaces described in the first sections. We
saw that Lyapunov exponents are defined for every representation of the fundamental
group π1(C)→ SLn(C) with non-expanding cusp monodromies. Hence if C is compact,
they are defined for every point of the character variety. Moreover Lyapunov exponents
are obviously independent of the conjugacy class of the representation, so they give
functions on the character variety. Notice that Lyapunov exponents are naturally defined
on the de Rham moduli space since they depend both on a representation and on the
complex structure of the base curve, which determines the hyperbolic metric and hence
the geodesic flow. We can then define functions, which we will call the Lyapunov exponent
functions, from the de Rham moduli space

λi :M(n)
DR(C)→ R, V 7→ λi(V), i = 1, . . . , n

that send a flat holomorphic bundle over C to its ith Lyapunov exponent. Recall that
we have to take care only of half of the Lyapunov spectrum since it is symmetric (see
Remark 1.1.2).

It seems natural now to ask what are the properties of these functions. Note that for
a rank 1 holomorphic flat bundle the Lyapunov spectrum has to be trivial since it is
symmetric. Hence the first non trivial case to study is the one of rank 2 flat bundles. In
this case we care only about the top Lyapunov exponent because of the symmetry of
the Lyapunov spectrum. From now on we focus on this case. Using the relation of the
geodesic flow and the random product on the fundamental group, we reprove continuity
of the top Lyapunov exponent function and the characterization of the locus of zero
exponent (see [DD17b] for the proof in the Brownian motion setup). We then use the
Shatz stratification ofM(2)

DR(C) together with the bound of Proposition 1.9.1, which is an
equality in the compact case thanks to Theorem 1.8.1, in order to describe the Lyapunov
exponent function restricted to the Shatz strata. This provides a generalization of the
main result of [DD17b] that was only about the maximal stratum, the oper locus. Using
the theory of projective structures and the knowledge of the VHS loci in rank 2, we
describe how the top Lyapunov exponent function behaves on the special loci described
in Figure 1.1.

1.12.1 Geodesic flow and random products Before describing some properties of the
top Lyapunov exponent function, we need a lemma that relates the cocycle Gt : Vρ → Vρ
defined by parallel transport over the geodesic flow to the random product of matrices in
the monodromy group. We will argue in a similar way as in [EM15, Proof of Th. 1]. By
a result of H. Furstenberg [Fur71], there is a probability measure ν on the uniformizing
group Γ < SL2(R) of C with support equal to Γ such that the Poisson boundary of (Γ, ν)
is (SO(2,R),Leb). We will denote by λρ(ν)(u) the Lyapunov exponents of u ∈ Vc with
respect to the random walk of law ρ(ν) on the monodromy group ρ(π1(C, c)) = ρ(Γ).
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1.12 Lyapunov exponent function in rank two

By definition, for νN-almost any (γ1, . . . , γn, . . . ) ∈ ΓN and any norm || · || on the vector
space Vc it holds

λρ(ν)(u) = lim
n→∞

1

n
||ρ(γn) · · · ρ(γ1)u||.

Lemma 1.12.1. The Lyapunov exponents λ(Vρ) defined by the cocycle given by parallel
transport over the geodesic flow of T 1C and the the Lyapunov exponents λρ(ν)(u) given
by the random walk on the monodromy group ρ(π1(C, c)) coincide.

Proof. Recall that by definition the Lyapunov exponent λ(Vρ) is defined to be

λ(Vρ) = lim
t→∞

1

t
log ||Gt(u)||

for almost any c ∈ T 1C and almost all u ∈ Vc. Here || · || is the constant norm which is
integrable by Theorem 1.1.3. Since we are dealing with the case of a compact Riemann
surface C, we can prove a stronger property than integrability of this norm. Consider the
lift of the geodesic flow to T 1 H. Since C is compact, a geodesic segment of unit length
can cross the boundary of a fundamental domain only a finite number of times. This
number is uniformly bounded for all starting points. Hence, there is a constant M > 0
such that

|| log(Gt(u))|| ≤M · t (1.15)

for all u ∈ Vρ and all t ∈ R.
Let us denote by (z, θ) ∈ T 1 H a lift of a point c ∈ T 1C. It is well known that a typical
trajectory of the random walk in Γ · i ⊂ H tracks a geodesic ray in H up to sublinear
error (see [CE15, Lemma 4.1]). This means that for almost all (γ1, . . . , γn, . . . ) ∈ ΓN

there exists a geodesic ray {gt(z, θ) : t ∈ R} ⊂ H such that

disthyp(γn · · · γ1 · i, gn(z, θ)) = o(n) (1.16)

for almost any (z, θ) ∈ T 1 H.
Putting together the bound (1.15) and the tracking property (1.16) we get

log

( ||Gn(u)||
||ρ(γn) · · · ρ(γ1)u||

)
≤M · disthyp(γn · · · γ1 · i, gn(z, θ)) = o(n)

for any u ∈ Vρ in the fiber over (z, θ). We conclude with the desired result

λ(Vρ)− λρ(ν)(u) = lim
n→∞

1

n
log

( ||Gn(u)||
||ρ(γn) · · · ρ(γ1)u||

)
≤ lim

n→∞

1

n
o(n) = 0

Thanks to the last lemma we can prove some properties of the top Lyapunov exponent
function using known results about random products of matrices. The next two proposi-
tion were already proven in [DD17b] in the context of Brownian motion using the same
core arguments about random walks. The main difference is that we related the geodesic
flow to the random walk while they related the Brownian motion to the random walk.
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1 Lyapunov exponents on character varieties

1.12.2 Locus of zero top Lyapunov exponent We can describe locus where the top
Lyapunov exponent vanishes.

Proposition 1.12.2. In rank 2, the Lyapunov exponent associated to a representation ρ
is zero if and only if ρ is elementary.

Proof. By Lemma 1.12.1, we can use classical results about random walks in the mon-
odromy group to establish if the top Lyapunov exponent vanishes. By a Theorem of
Furstenberg (see [Via14, Th. 6.11]), the Lyapunov exponents associated to a random
walk in rank 2 are non zeroes if and only if the the cocycle is pinching and twisting.

If the cocycle is non-pinching, then the monodromy group is contained in a compact
subgroup of SL2(C), so it is the unitary case. If the cocycle is non-twisting then the
monodromy group is a diagonal subgroup or a triangular subgroup or the image is
contained in the subgroup generated by 〈

(
λ 0
0 λ−1

)
, ( 0 −1

1 0 )〉. These cases are exactly the
cases of non-elementary representations.

1.12.3 Continuity of the top Lyapunov exponent function Using ones again Lemma
1.12.1, we can use known results about random walks to prove continuity of the top
Lyapunov exponent function.

Proposition 1.12.3. The top Lyapunov exponent function

λ1 :M(2)
B → R≥0

is a continuous function. Moreover it is locally Holder continuous on the set of non-
elementary representations.

Proof. By Lemma 1.12.1, we can use continuity results of Lyapunov exponents proved in
the context of random walks. By [LP89] the top Lyapunov exponent function is locally
Holder continuous on the set of non-elementary representations. Moreover, since the set
of elementary representations coincides with the set of zero exponents, the top Lyapunov
exponent function is continuous also at these points since all exponents are equal (see for
example [Via14, Corollary 9.3]).

We will now describe special loci where we can say something about the Lyapunov
exponent. The main idea is to use Theorem 1.7.13 to get a lower bound for the top
Lyapunov exponent on the Shatz strata. We can then describe the special loci where we
have more information about the Lyapunov exponent. These special loci are the ones
described in Picture 1.1.

1.12.4 Lyapunov exponent function is unbounded Recall that by Theorem 1.9.2 the
top Lyapunov exponent function is unbounded on the oper locus with logarithmic growth
near the boundary of the character variety. The Lyapunov exponent function should be
unbounded also on the space of Fuchsian representation, which can be identified with
the Teichmüller space, and hence on any Hitchin component, but it was still not proven
at this moment.
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1.12 Lyapunov exponent function in rank two

1.12.5 Lyapunov exponents and Shatz stratification in rank 2 Recall that the
Shatz stratification is defined by Harder-Narasimhan type. In rank 2, there is a stratum
for each integer 0 ≤ e ≤ g − 1 and for opers, which define the maximal stratum, the
maximal destabilizing subbundle has degree g − 1. Recall moreover that the holonomy
map hol : P(S)→M(2)

B has image equal to the space of non-elementary representations
(see Theorem 1.4.4).

Proposition 1.12.4. Let V be a flat vector bundle in the e-th Shatz stratum and let
L ⊂ V be the maximal destabilizing sub-line bundle of degree e. Let devL : H→ P1

C be the
associated developing map. Then the first Lyapunov exponent associated to V is given by

λ1(V) =
e

g − 1
+ 4π lim

r→∞

1

r

∫ r

0

]{dev−1(x) ∩Dr(z)}
vol(Dr(z))

dr

for almost any z ∈ H and almost any x ∈ P1
C.

Proof. The statement follows direcly from Theorem 1.8.1 and the equivalent definition
of bad locus given in Remark 1.7.12.

Remark 1.12.5. The main result of [DD17b] relating Lyapunov exponents to the covering
degree defined in term of the developing map of a projective structure is a special case of
the last theorem for e = g − 1, meaning in the case of the oper locus or equivalently of
hol(P(C)). The difference in the above equality and the one in [DD17b] is given by the
different normalization of the hyperbolic metric on C.

In the case of the maximal stratum, which is the oper locus Op2(C), we can say something
more using the description via holonomy of projective structures given by Proposition
1.5.1. Recall that in remark 1.5.4 we defined the subset B(C) ⊂ Op2(C) given by the
Bers embedding.

Proposition 1.12.6. The Lyapunov exponent function restricted to the oper locus is
greater or equal than one and unbounded. Moreover it is one if the representation belongs
to the closed subset B(C) ⊂ Op2(C) containing the uniformizing representation.

Proof. On the oper locus the maximal degree sub-line bundle is isomorphic to a square
root K1/2

C of the canonical bundle which has degree equal to g− 1. Hence the Proposition
1.7.10 gives that the top Lyapunov exponent has to be greater than λ1 ≥ 1. Moreover
the top Lyapunov exponent function is unbounded by Theorem 1.9.2.

Since the closed locus B(C) ⊂ Op2(C) is defined by the Bers embedding, by the density
theorem the standard developing map giving the inclusion of the maximal sub-line bundle
V1 ⊂ V (see Proposition 1.5.1) is a biholomorphism of H onto one of the two domain of
discontinuity of the associated representation. Hence the image of the developing map
does not intersect the limit set of the representation. By the condition of Corollary 1.7.22
we get equality.
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1 Lyapunov exponents on character varieties

Remark 1.12.7. In [DD17b] they are able to prove the inverse of the second statement of
the last proposition, namely that if the representation is in the complement Op2(C)\B(C)
of the Bers embedding, then λ1 > 1. The tool that they can use is that they know that
the support of the harmonic measure is in the limit set and that the error term vanishes
if and only if the image of the developing map intersect this support.

Variations of Hodge structures locus

Recall that the locus inM(2)
DR(C) corresponding to complex variation of Hodge structures

is quite well understood. We described its connected components Pe in Section 1.5.4.
Since for e = 0 we get weight zero variations of Hodge structures and for 0 < e ≤ g − 1
we get weight 1 variation of Hodge structures, we can compute exactly the associated
top Lyapunov exponent in all of these loci.

Proposition 1.12.8. The top Lyapunov exponent function restricted on the connected
component Pe of the variation of Hodge structure locus is constant and given by

λ1|Pe =
e

g − 1
, e = 0, . . . , g − 1.

Proof. We already saw in Proposition 1.11.6 that the Lyapunov spectrum of a weight
zero variation of Hodge structure is trivial. By the description of Pe we know that if
H ∈ Pe, then the Hodge bundle H1,0 ⊂ H has degree e and the result follows from
Theorem 1.11.2 since we are dealing with weight 1 variation of Hodge structures.

Real representations locus

By Proposition 1.12.2 the top Lyapunov exponent is the constant zero function on the
connected componentM(2)

B,R,0 with zero Toledo invariant, since it is contained in the locus
of elementary representations. Moreover there are points on the Fuchsian locus with
Lyapunov exponent equal to one, namely the uniformizing representation associated to C.
The Fuchsian locus intersects the oper locus countably many times and in these points
the top Lyapunov exponent is strictly greater than one by Remark 1.12.7. Moreover, if
Conjecture 1 is true the top Lyapunov exponent function is greater than one on the full
Fuchsian locus.
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2 The Equation of the Kenyon-Smillie
(2, 3, 4)-Teichmüller curve

The relation of Lyapunov exponents to algebraic geometry originated from the study of
the dynamics of Teichmüller curves. Almost all known examples of Teichmüller curves
come in infinite families. In this chapter we compute the equations of the algebraic
family of curves over one of the two sporadic Teicmüller curves, the Kenyon-Smillie
(2, 3, 4)-Teichmüller curve. The characterization of Teichmüller curves via their associated
variation of Hodge structure proved in [Möl06b] and the description of the associated
Harder-Narasimhan type computed in [YZ13] are ones of the main used tools. Once we
compute the equation of the family, we test that the family of plane quartics that we
found is indeed a Teichmüller curve by computing the Picard-Fuchs differential equation
associated to the corresponding variation of Hodge structures using the Griffiths-Dwork
method. The content of this chapter is joint work with Andrè Kappes and has appeared
as [CK17].

2.1 Introduction

Almost all known primitive Teichmüller curves fall in very few series. Currently, an
infinite series in genus 2 is known by independent work of Calta and McMullen ([McM03],
[Cal04]), which generalizes to the construction of the infinite Prym families ([McM06]).
In addition, there is the infinite series of Bouw-Möller curves ([BM10b]) generalizing
[Vee89] and [War98]. Moreover, recently McMullen, Mukamel and Wright discovered a
new series of Teichmüller curves in genus 4.

There are only two known primitive Teichmüller curves that do not belong to any of these
families. One of them parametrizes all affine deformations {(St, ωt)}t of the translation
surface (S, ω) ∈ ΩM3(3, 1) that is obtained from unfolding a Euclidean triangle with
angles (2π

9
, 3π

9
, 4π

9
). It was discovered by Kenyon and Smillie [KS00], who proved that

(S, ω) is a lattice surface with Veech group equal to the triangle group ∆(9,∞,∞). The
translation surface (S, ω) is the order 9 orbifold point of its associated Teichmüller curve,
which is uniformized by H /∆(9,∞,∞).

The equation. In this paper, we discuss the Kenyon-Smillie (2, 3, 4)-Teichmüller curve
from an algebro-geometric perspective. First, we derive the equations of the algebraic
curves {St}t parametrized by this Teichmüller curve.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

Theorem 2.1.1. The universal family over the complement of the orbifold point of
the Kenyon-Smillie (2, 3, 4)-Teichmüller curve is given by the family of plane quartics
satisfying the equation

X4 + t(X4 − 3X3Y + 6X3Z − 3X2Y 2 − 6X2Y Z + 6X2Z2 + 4XY 3

−6XY 2Z − 6XY Z2 +XZ3 + 3Y 4 + 3Y 3Z) = 0
(2.1)

where t varies in P1−{0, 1,∞}.
The triple zero of the differential ωt is the point pt = (0 : 0 : 1) ∈ St and the simple zero
is the point qt = (0 : 1 : −1) ∈ St.

Since this Teichmüller curve has one orbifold point, which is t = 0 in our presentation,
the family we give is universal over the complement of this point. See formula (2.10) for
the universal family over a cover of the full Teichmüller curve.

We prove Theorem 2.1.1 in two different ways. Firstly we prove it constructing the
equation using considerations on the conditions imposed by the three special points of the
Teichmüller curve, the orbifold point S0 and the two cusps S1 and S∞. Secondly, we show
again that Equation (2.1) defines a Teichmüller curve by constructing the Picard-Fuchs
differential equation associated to the variation of Hodge structure over the Teichmüller
curve.

The Torsion map. By [Möl06a], the difference between two zeros of ωt is a torsion point
of the Jacobian of St. Thus, there is a minimal n such that for all t, the divisor n(pt− qt)
is the divisor of a meromorphic function, which we call the torsion map Tor. Using
Theorem 2.1.1, we can explicitly determine this map for the Kenyon-Smillie Teichmüller
curve and we notice that qt is a hyperflex for every t.

Proposition 2.1.2. The torsion map is given by the projection from qt, which is the
map induced by the linear system |KSt(−qt)|. The point qt is a hyperflex for every t,
which means that the tangent to St in qt is of order 4.

Figure 2.1: Real points of the curve St for t = 3 near p = (0, 0) and the hyperflex
q = (0,−1).
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In the above coordinates, the torsion map is the degree 3 map totally ramified over pt
and qt given by

Tor : St → P1,

{
(X : Y : Z) 7→ (X : Y + Z) for (X : Y : Z) 6= (0 : 1 : −1)

qt = (0 : 1 : −1) 7→ (−1 : 1)

We will give also a proof of the above Proposition in which we do not use the explicit
equation of the universal family. Indeed, it is enough to know that the Teichmüller curve
parametrizes quartics in P2 together with a differential in the stratum (3, 1).

Notice that, since every St has a hyperflex in qt, the Teichmüller curve is also in the
image of the projection of the stratum ΩM3(4)odd, which is a divisor inM3.

The initial motivation of the paper was to investigate a question of Alex Wright about
the relation between real multiplication and the torsion map. One can see such a relation
in the Veech-Ward-Bouw-Möller Teichmüller curves, where real multiplication is induced
by the correspondence given by the graph of an automorphism coming from the Galois
normalization map (see Section 2.4.8 for details). As in the Veech-Ward-Bouw-Möller case,
the Kenyon-Smillie Teichmüller curve is also uniformized by a triangle group. However,
we will deduce from Proposition 2.1.2 that for the Kenyon-Smillie-Teichmüller curve, real
multiplication does not come from the normalization of the torsion map. This gives some
evidence in support of the Kenyon-Smillie example being sporadic.

Picard-Fuchs equation. Given only Equation (2.1), we can prove independently that
it is indeed the equation of the universal family over a Teichmüller curve by computing
the Picard-Fuchs equation satisfied by the periods of ωt.

Proposition 2.1.3. The periods of ωt are solutions of the following differential equation:

16

81t(t− 1)
y +

17t− 8

9t(t− 1)
y′ + y′′ = 0.

Note that this equation is a hypergeometric differential equation, meaning that it has
three regular singular points.

The main ingredient to compute the above Picard-Fuchs equation is the well-known
Griffiths-Dwork method, which is an algorithm to compute Picard-Fuchs equations of
family of projective hypersurfaces.

At this point, it is easy to show that that the absolute cohomology bundle has a maximal
Higgs rank 2 subbundle.

Corollary 2.1.4. The differential ωt defines a maximal Higgs, irreducible, rank 2 sub-
bundle of the absolute cohomology bundle.

By the characterization of Teichmüller curves of [Möl06b, Theorem 5.3], Corollary 2.1.4
shows again that Equation (2.1) defines a Teichmüller curve.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

Structure of the chapter. In Section 2.2, we set up the notation and we gather known
facts about the Kenynon-Smillie Teichmüller curve and the splitting ofH0(St,Ω

1) into one-
dimensional eigenspaces given by real multiplication on the Jacobian of St. In Section 2.3,
the three special points, the two cusps and the orbifold point, of the Kenyon-Smillie-curve
are discussed. Section 2.4 contains the proof of Theorem 2.1.1 and Proposition 2.1.2. The
starting point is that every non-hyperelliptic curve in genus 3 is a canonically embedded
quartic in P2. The main ingredient in the proof of Theorem 2.1.1 is the use of a structural
result for the relative canonical ring of a family of quartics of [CP06]. This, together with
the computation of the degree of the eigenspace bundles, enables us to obtain an a priori
bound on the degree of the coefficients of the family. It then suffices to consider the three
special points on the Teichmüller curve to compute these coefficients. In Section 2.5,
we derive the Picard-Fuchs equation proving Proposition 2.1.3 and we show again that
Equation (2.1) defines a Teichmüller curve.

Notes and references. The strategy that we use to determine the equation of the
universal family has already been successfully implemented before by Bouw and Möller
[BM10a], who have worked out the equations of two of the Weierstraß curves in genus two.
The main difference here is that we work with a family of smooth quartic hypersurfaces
in P2 instead that with a family of hyperelliptic curves.

For an algebraic description of the other Weierstraß curves in genus two with fundamental
discriminant D < 100, see [KM14]. The methods that they use can be applied to other
Weierstraß curves in genus two and possibly also to the Prym curves in genus three and
four.

The second Teichmüller curve that is not known to belong to an infinite series has been
found by Vorobets [Vor96] and is generated by the surface in ΩM4(6) obtained from
unfolding a billiard in a triangle with angles (π

5
, π

3
, 7π

15
). To the best of our knowledge, no

algebro-geometric construction for its Teichmüller curve is known so far.

It is an open question, whether these two Teichmüller curves are truly sporadic. One
argument in support of this hypothesis is given in [Lei04, Section 7], from which one can
deduce that these Teichmüller curves do not fit into a family, where the Veech group is
generated by two Dehn multi-twists. Since not all parabolics are multi-twists, this is
however not enough to prove sporadicity among Veech groups generated by two parabolics.
It is also worth noting that both the Kenyon-Smillie Teichmüller curve and the Vorobets
Teichmüller curve correspond to two of the three exceptional billiard triangles that are
naturally attached to the sporadic Coxeter groups E6, E7 and E8.

Notice that, curiously, the Kenyon-Smillie Teichmüller curve is the only known primitive
Teichmüller curve where the zeros of the differential have different orders and the only
known primitive Teichmüller curve that does not possess an involution negating ω.

It would be interesting to find the correspondence that gives real multiplication for the
Kenyon-Smillie Teichmüller curve. A related open question is whether real multiplication
for this curve is of Hecke type as in the Veech-Ward-Bouw-Möller case (cf. [Wri13]).
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2.2 Preliminaries

2.2 Preliminaries

In this section, we gather building blocks for the proof of the main theorem. We assume
that the reader is familiar with the basic notions on Teichmüller curves. For background
reading one may consult for example [Möl13].

2.2.1 Orbifold uniformization and universal family Let C denote the Kenyon-Smillie-
Teichmüller curve associated to the flat surface (S, ω) shown in Figure 2.2.
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Figure 2.2: The Kenyon-Smillie (2, 3, 4)-lattice surface. Sides are labeled by powers of
ζ9 = exp(2πi/9). The triple (simple) zero is marked by a white (black) dot.

In [KS00], Kenyon and Smillie proved that the Veech group of (S, ω) is the triangle
group ∆(9,∞,∞). Thus, C is uniformized by H /∆(9,∞,∞) and the completion of C
is isomorphic to P1. Let t ∈ P1 be a parameter such that t = 0 is the orbifold point of
order 9, t = 1 is the cusp correspondig to the limit deformation of the horizontal cylinder
decomposition of (S, ω) and t =∞ the cusp corresponding to the vertical one. Let St
denote the (stable) Riemann surface parametrized by t and let ωt denote the (stable)
holomorphic 1-form on St that is obtained by affinely deforming ω. By our choice of t,
we have (S, ω) = (S0, ω0). Let further pt, qt ∈ St be such that

div(ωt) = 3pt + qt.

We will abbreviate p = p0 and q = q0.

To avoid working with orbifold line bundles, we pass to a finite étale covering C̃ of C. In
order to unfold the orbifold structure of C, we perform the 9-sheeted covering

C̃ → P1, s 7→ t = s9
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

which is totally ramified over the orbifold point and the cusp at ∞. The corresponding
subgroup Γ′ of the Veech group is free and the quotient by Γ′ of the universal family over
the Teichmüller disk gives the family of curves φ̃ : X̃ → C̃. By the Riemann-Hurwitz
theorem the genus of C̃ is still 0 and by construction it has 10 cusps, which are given by
the points {ζ i9,∞}i=1,...,9 where ζ9 := exp(2πi/9).

Let C ∼=P1 denote the completion of C̃. The family X̃ is extended to the family φ : X → C,
by adding stable curves at the cusps of C̃.

The absolute cohomology bundle, which will come up in Section 2.5, is the flat vector
bundle on C̃ with fiber H1(X̃ s,C) over a point s ∈ C̃. Formally, it is defined as
R1φ̃∗Q⊗COC̃ . It has a canonical extension, due to Deligne, to a vector bundle on all of
C, which we will still refer to as the absolute cohomology bundle.

2.2.2 Real multiplication By [Möl06b, Theorem 2.7], the Jacobian of X s has real
multiplication by the trace field K(S, ω), which in our case is the cubic number field

K(S, ω) = Q(v), v = 2 cos
(

2π
9

)
.

In particular, C is an algebraically primitive Teichmüller curve. Note that v is a root of
P (v) = v3 − 3v + 1. The field K(S, ω) has three embeddings σi, i = 1, 2, 3, into R. We
denote the image of an element λ ∈ K(X,ω) under the i-th embedding by λ(i). We order
the three embeddings by requiring that

v(1) = v, v(2) = 2− v − v2, v(3) = −2 + v2.

This choice fits together with the ordering of the corresponding eigenspace bundles
described later, as one can see by looking at the differentials over the cusps given in
Section 2.3.

Having real multiplication implies that the direct image V := φ∗ωX/C of the relative
dualizing sheaf ωX/C , is a rank 3 vector bundle which splits as a direct sum of three line
bundles

V =
3⊕

i=1

Li

where Li is the eigenspace bundle for real multiplication via the i-th embedding.

We order the line bundles Li in such a way that L1 is the one that is generated by ωs
(and is therefore maximal Higgs by [Möl06b]), and such that L1⊕L2 is the next step in
the Harder-Narasimhan filtration of V (see [BHM14, Prop. 4.3]).

2.3 Special points of the Teichmüller curve

In this section, we study the three special points of the Kenyon-Smillie Teichmüller
curve. We compute how real multiplication acts in the orbifold point and we compute the
equations of the orbifold point and the two cusps as plane quartics in the distinguished
coordinate system given by sections in the eigenform line bundles.
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2.3 Special points of the Teichmüller curve

2.3.1 Orbifold point The orbifold point of the Teichmüller curve corresponds to the
surface (X,ω), which admits an automorphism of order 9. We want to compute the
action of this automorphism on the space of holomorphic differentials.
Proposition 2.3.1. The translation surface (S, ω) corresponding to the orbifold point on
C is the complete non-singular curve S̃ with singular model given by the affine equation

y9 = x2(x− 1)3.

The curve S̃ is a 9-sheeted cyclic covering of P1 totally branched over 0 and ∞ and
branched of order 3 over 1. The deck transformation is given by

g : (x, y) 7→ (x, ζ9 · y).

Up to scalar multiples, the eigendifferentials for real multiplication ω(i)
0 are given by

ω
(1)
0 =

y dx

x(x− 1)
, ω

(2)
0 =

y5dx

x2(x− 1)2
, ω

(3)
0 =

y7dx

x2(x− 1)3
. (2.2)

Proof. Up to isomorphism, there is only one curve in genus 3 admitting a Z /9Z-action
(cf. [KK77]), so (S, ω) and S̃ are isomorphic. To see that the given differentials form a
basis of holomorphic differentials see [Bou01]. The divisors of these differentials are given
by

div(ω
(1)
0 ) = 3p+ q, div(ω

(2)
0 ) = p+

3∑

i=1

li, div(ω
(3)
0 ) = 4q

where p is the preimage of ∞ ∈ P1 , q is the preimage of 0 ∈ P1 and li are the three
preimages of 1 ∈ P1 under the cyclic covering map.

Note that the cyclic group generated by g must be the same as the cyclic group generated
by the automorphism of the flat surface (S, ω). Hence ω(1)

0 in (2.2) is proportional to ω,
since it is the only eigendifferential of g∗ with the right divisor. By the construction of real
multiplication on Teichmüller curves, we now know that its restriction to the fiber over 0
is given by the action of the totally real subfield Q(ζ9 + ζ−1

9 ) = Q(v) ≤ Q(ζ9). Therefore,
the ω(i)

0 given in (2.2) are indeed eigendifferentials for the action of real multiplication,
and from their divisors and expression (2.7) we see that ω(i)

0 ∈ (Li)0.
Corollary 2.3.2. The action of the order 9 automorphism g on H0(S,Ω1) with respect
to the basis {ω(i)

0 } is given by the diagonal matrix

Ag = diag(ζ, ζ5, ζ7) ∈ PGL3(C).

Even though we will not need it in the next sections, it is nice to present the smooth
quartic model of the curve S given via the canonical embedding.
Corollary 2.3.3. Up to isomorphism, the curve S = S0 is given as the vanishing locus
in P2 of

F0(X, Y, Z) = X4 +XZ3 + 3Y 3Z.

Proof. One checks that putting X = −ζ3ω
(1)
0 , Y = 3

√
ζ3
3
ω

(2)
0 , Z = ω

(3)
0 , where ζ3 is a third

root of unity, we obtain the above relation in H0(S, ω4
S). The normalizing coefficients are

put in order to have an equation consistent with the choices made later on.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

2.3.2 Cusps One of the two cusps of the Teichmüller curve is an irreducible stable curve,
while the other one is reducible. We choose t such that the reducible stable curve lies
over t =∞ and the irreducible stable curve over t = 1.

t = 1 t =∞

Figure 2.3: Dual graphs of the two cusps of the Teichmüller curve. The vertices represent
the connected components and the edges correspond to the nodes of the
stable curves associated to the cusps.

Recall that the topological type of a cusp is obtained by contracting the core curves of
cylinders in the cylinder decomposition of (S, ω) in the periodic direction corresponding
to the cusp (see for example [Möl13, Prop. 5.9]).

2.3.3 Reducible cusp The reducible cusp corresponds to the vertical cylinder decom-
position of (S, ω) shown in Figure 2.4.
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Figure 2.4: Vertical cylinder decomposition of S∞ with cylinders A, B, C, D (from light
to dark).

Proposition 2.3.4. 1. The stable curve (S∞, ω∞) consists of two P1

S∞ = S(1)
∞ ∪ S(2)

∞
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2.3 Special points of the Teichmüller curve

that meet at 3 points B,C,D. The only other singular point is a node A, where
S

(1)
∞ is glued to itself.

2. The projective tuple of residues of the stable differential is given by

(rA : rB : rC : rD) = (−v2 − v + 3 : 1 : v2 − 3 : −v2 + 2).

3. Up to scaling and isomorphism, the stable differential ω∞ on the normalization is
given by

ω∞
∣∣
S

(1)
∞

= µ∞

(
rA
z − 1

+
−rA
z + 1

+
rB

z −B +
rC

z − C +
rD

z −D

)
dz (2.3)

ω∞
∣∣
S

(2)
∞

= µ∞

(−rB
z

+
−rC
z − 1

+
−rD
z + 1

)
dz (2.4)

where

B = 1
17

(−2v2 + 6v + 5), C = 1
17

(−6v2 − 8v + 13), D = 1
17

(8v2 + 2v − 15),

and µ∞ = v2 + 2v − 2.

The factor µ∞ in front is chosen in such a way that the equation for the stable curve in
Corollary 2.3.5 has rational coefficients.

Proof. The topological type of S∞ and the projective tuple of residues of the stable
differential can be read off directly from the flat picture. The cusp at ∞ corresponds to
replacing the cylinders of the cylinder decomposition of S in the vertical direction (see
Figure 2.4) by infinitely long cylinders. The residues of the stable differential ω∞ at the
nodes are given by the circumferences of the cylinders up to simultaneous multiplication
by a non-zero scalar.

We identify the normalization of S(1)
∞ with P1 by sending the two preimages of A to 1 and

−1 and the triple zero of ω∞ to 0. One checks that there are precisely two differentials
with simple poles at 1,−1 and at three other points B,C,D with the residues given
above and a threefold zero at P = 0. These two differentials corresponds to the triples

B1 = 1
17

(−2v2 + 6v + 5), C1 = 1
17

(−6v2 − 8v + 13), D1 = 1
17

(8v2 + 2v − 15)

and

B2 = 1
19

(6v2 + 18v − 21), C2 = 1
19

(−18v2 − 12v + 27), D2 = 1
19

(12v2 − 6v − 33).

After applying Galois conjugation to the residues, exchanging v = v(1) with v(2), by
Remark 2.4.5 the Galois conjugate ω(2)

∞ has to have a zero at z = 0. One checks that
only the differential corresponding to the triple (B1, C1, D1) has this property.

In the same way, we identify S(2)
∞ with P1 by sending the three nodes B, C, D to 0, 1

and −1 and we obtain ω∞
∣∣
X

(2)
∞
.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

Corollary 2.3.5. Up to isomorphism, the stable curve S∞ is given as the vanishing locus
in P2 of

F∞(X, Y, Z) = X4 − 3X3Y + 6X3Z − 3X2Y 2 − 6X2Y Z + 6X2Z2

+ 4XY 3 − 6XY 2Z − 6XY Z2 +XZ3 + 3Y 4 + 3Y 3Z

= (X + Y + Z)

· (X3 − 4X2Y + 5X2Z +XY 2 − 7XY Z +XZ2 + 3Y 3).

(2.5)

Proof. One checks that putting X = ω
(1)
∞ , Y = ω

(2)
∞ , Z = ω

(3)
∞ , where

ω(i)
∞
∣∣
X

(1)
∞

= µ(i)
∞

(
r

(i)
A

z − 1
+
−r(i)

A

z + 1
+

r
(i)
B

z −B +
r

(i)
C

z − C +
r

(i)
D

z −D

)
dz

ω(i)
∞
∣∣
X

(2)
∞

= µ(i)
∞

(
−r(i)

B

z
+
−r(i)

C

z − 1
+
−r(i)

D

z + 1

)
dz (i = 1, 2, 3)

are the three Galois conjugates of ω∞, we obtain the above relation in H0(S∞, ω
4
S∞).

2.3.4 Irreducible cusp The irreducible cusp and its stable differential has been described
in [BM12, Example 13.8]. We recall their description. It is obtained from the horizontal
cylinder decomposition of S0 shown in Figure 2.5 by replacing each half of a cylinder by
a half-infinite strip of the same width.
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Figure 2.5: Horizontal cylinder decomposition of S0 with cylinders C1, C2, C3 (from light
to dark).

Proposition 2.3.6. 1. The stable curve S1 is isomorphic to a P1 with 3 pairs of
points identified.
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2.4 Equation of the the universal family over the Teichmüller curve

2. The projective tuple of residues of the stable differential ω1 is given by

(r1 : r2 : r3) = (−v2 − v : v + 1 : −2v2 − 3v + 2).

3. Up to scaling and isomorphism, the stable differential ω1 on the normalization is
given by

ω1 = µ1 ·
3∑

i=1

(
ri

z − xi
− ri
z − ζ3xi

)
,

where ζ3 = exp(2πi/3), µ1 = −v2 + 2 and

x1 = 1, x2 = 2− v2, x3 = v2 − 3.

Again, the factor µ1 is chosen in order that the coefficients of the equation below become
rational.

Corollary 2.3.7. Up to isomorphism, the stable curve S1 is given as the vanishing locus
in P2 of

F1(X, Y, Z) = 2X4 − 3X3Y + 6X3Z − 3X2Y 2 − 6X2Y Z + 6X2Z2

+ 4XY 3 − 6XY 2Z − 6XY Z2 +XZ3 + 3Y 4 + 3Y 3Z
(2.6)

Proof. As in the proof of Corollary 2.3.5, one checks that putting X = −ω(1)
1 , Y = ω

(2)
1 ,

Z = ω
(3)
1 , where the ω(i)

1 are the three Galois conjugates of ω1, we obtain the quartic
relation (2.6).

Note that the choice of the coordinates in the previous corollary is made in such a way
that the choice of coordinates of P2 at s = 1 is consistent with the choice of coordinates
at s =∞. This will be clear after Proposition 2.4.7.

2.4 Equation of the the universal family over the Teichmüller
curve

In this section we will prove the main Theorem 2.1.1.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

2.4.1 The Teichmüller curve as a family of plane quartics We want to realize the
family φ : X → C as a family of plane quartics. Since some of the fibers are stable
curves, we need to employ the relative dualizing sheaf ωX/C . It coincides with the relative
canonical sheaf off the singular fibers. On a singular stable curve, its sections can be
understood as meromorphic 1-forms on the normalization, whose only poles are simple
poles at the preimages of a node and such that the residues have opposite sign.

For every s ∈ P1, let

ϕs : X s → P(H0(X s, ωX s)
∨), x 7→ (ω 7→ ω(x))

be the canonical map associated to X s. Note that if we fix a basis {ω(i)
s }i=1,2,3 of

H0(X s, ωX s), the map above is simply given by

ϕs : X s → P2, p 7→ (ω(1)
s (p) : ω(2)

s (p) : ω(3)
s (p)).

Proposition 2.4.1. The canonical map ϕs is an embedding for every s ∈ P1. As a
consequence, each ϕs(X s) is a plane quartic.

In order to prove the above proposition, we only have to check that there are no
hyperelliptic curves in the family.

Lemma 2.4.2. None of the curves X s is hyperelliptic.

Proof. We first show that the surface (S, ω) is not hyperelliptic. Let T denote the order
9 automorphism induced by rotation of one triangle by 2π

9
. If S were hyperelliptic, the

hyperelliptic involution J would commute with T , and thus it would descend to an order
2 automorphism J of S/〈T 〉∼=P1. This map J would have to fix three points, namely
the images of p and q and the image of a fixed point of T 3. Since J would fix 3 points on
P1, we would have J = id, which is impossible.

The claim now follows from [Möl13, Prop. 2.3] for the non-singular fibers and from
[Möl13, Prop. 5.13] for the fibers over the cusps.

The above Lemma is clear since we are in the (3, 1)-Stratum, however it is nice to have a
different geometric proof.

Proof of Proposition 2.4.1. For every s outside the set of cusps, the canonical map is an
embedding onto a non-singular plane quartic in P2, since by Lemma 2.4.2 every X s is
a non-hyperelliptic curve. Since the singular fibers X ζi9

and X∞ are 3-connected (see
Figure 2.3), by [CFHR99, Theorem 3.6] or [Art04, Theorem 1.2] their canonical map is
still an embedding and the image is still a quartic.
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2.4 Equation of the the universal family over the Teichmüller curve

2.4.2 Harder-Narasimhan filtration and degrees of eigenspace bundles Recall that
the direct image V of the relative dualizing sheaf is a rank 3 vector bundle which splits
as a direct sum of three line bundles

V =
3⊕

i=1

Li

where Li is the eigenspace bundle for real multiplication via the i-th embedding. They
were ordered in such a way that L1 is the one that is generated by ωs (and is therefore
maximal Higgs by [Möl06b]), and such that L1⊕L2 is the next step in the Harder-
Narasimhan filtration of V .
Since C ∼= P1, the line bundle Li is isomorphic to OP1(ki), where ki = deg(Li), and these
degrees are readily computed.

Lemma 2.4.3. The degrees of the line bundles Li over C are given by

deg(L1) = 4 deg(L2) = 2 deg(L3) = 1

Proof. First of all note that

deg(Ω1
C

(log(S)) = −χ(C̃) = −(χ(C)−#cusps) = 8.

Since we have a splitting of V into line bundles, we can consider the numbers

λi =
2 deg(Li)

deg(Ω1
C

(log(S))
=

1

4
deg(Li).

Since L1 is maximal Higgs, λ1 = 1.

From [BHM14, Prop. 4.3], we know that the Harder-Narasimhan filtration of V is given
by the filtration of eigenspace bundles. By our ordering choice, this is

L1 ⊂ L1⊕L2 ⊂ V .
The quotient of the degrees of the steps of the Harder-Narasimhan filtration and the
degree of Ω1

C
(log(S) were computed in [YZ13, Table 1] for the (3, 1)-Stratum under the

name wi of Weierstraß exponents.

Hence, since we established that the λi are the same as wi, we see from [YZ13, Table 1]

that λ2 =
1

2
, λ3 =

1

4
and we can conclude.

Remark 2.4.4. By Kontsevich’s formula (see e. g. [BM10b, Theorem 9.2]), the λi are the
Lyapunov exponents of the Kontsevich-Zorich cocycle on C.
Remark 2.4.5. The ordering of the line bundles Li is also reflected in the divisors of its
sections. If we let ω(i) denote a local section of Li (i = 1, 2, 3), then by [BHM14, Prop.
4.1]

div(ω(1)
s ) = 3ps + qs ∈ Pic(X s)

div(ω(2)
s ) ≥ ps ∈ Pic(X s)

(2.7)

This is used to label the embeddings of the trace field K(X,ω) consistently.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

2.4.3 Setup for the equation The canonical embedding of the fibers of the family
φ : X → C provides a rational map

ϕ : X → P2×C, ps 7→ ((ω(1)
s (ps) : ω(2)

s (ps) : ω(3)
s (ps)), s)

which is an isomorphism onto its image. By Lemma 2.4.3, the global sections ω(i) can be
chosen such that

div(ω(i)) = ki · ∞, (i = 1, 2, 3), (2.8)

where k1 = 4, k2 = 2 and k3 = 1. In the sequel, it will be convenient to use projective
coordinates (s1 : s2) ∈ P1 for the base, so that s ∈ C is identified with (1 : s) ∈ P1.

The image of the map ϕ is the zero locus of a degree 4 primitive homogeneous polynomial
whose coefficients are homogeneous polynomials in (s1 : s2) ∈ P1. We denote this
polynomial by

F =
∑

i+j+k=4

ai,j,k(s1, s2)X iY jZk ∈ C[s1, s2][X, Y, Z]4.

The aim is to compute the coefficients ai,j,k(s1, s2).

2.4.4 Degrees of the coefficients In this section, we exhibit the main ingredient,
which is central in the proof of Theorem 2.1.1. Using a structural result for the relative
canonical ring of a family of quartics (cf. [CP06, Proposition 7.9, (2)]), we compute the
degrees of the coefficients ai,j,k(s1, s2).

Proposition 2.4.6. For every (i, j, k) with i + j + k = 4, the coefficient ai,j,k of the
primitive polynomial F is a homogeneous polynomial in (s1 : s2) ∈ P1 of degree

deg(ai,j,k(s1, s2)) = 4i+ 2j + k − 7

if 4i+ 2j + k − 7 ≥ 0 or the zero polynomial otherwise.

i 4 3 3 2 2 2 1 1 1 1 0 0 0 0 0
j 0 1 0 2 1 0 3 2 1 0 4 3 2 1 0
k 0 0 1 0 1 2 0 1 2 3 0 1 2 3 4

4i+ 2j + k − 7 9 7 6 5 4 3 3 2 1 0 1 0 -1 -2 -3

Table 2.1: Degree of ai,j,k(s1, s2).

An important element in the proof of this proposition is the fact that there is an
identification between maps OP1(l)→ OP1(m) and global sections of OP1(m− l), which
are identified with homogeneous polynomials if we consider the standard trivialization
of OP1(m − l). The choice of global sections (2.8) is made exactly in order to have
this identification when we consider maps of line bundles Li → Lj and their canonical
trivializations given by taking ω(i) as a basis over P1−{∞} and ski2 · ω(i) over P1−{0}.
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2.4 Equation of the the universal family over the Teichmüller curve

Proof. As in [CP06], we consider the relative canonical algebra associated with φ : X → C
whose graded pieces are direct images of powers of the relative dualizing sheaf

Vn = φ∗ω
⊗n
X/C

and the multiplication map
σn : Symn(V1)→ Vn

given on a stalk over s ∈ C by

(σn)s : Symn(H0(X s, ωX s))→ H0(X s, ω
⊗n
X s

), ω1 ⊗ · · · ⊗ ωn 7→ ω1 · · · · · ωn.

Since the canonical embedding of X s is a smooth plane quartic defined the equation Fs,
the standard exact sequence of sheaves induced by the embedding is given by

0→ I(Fs)(4)→ OP(H0(X s,ωXs )∨)(4)→ ω⊗ 4

X s
→ 0.

This shows that the kernel K4 of σ4 is precisely the ideal sheaf generated by F .

Now we can use [CP06, Proposition 7.9, (2)], which states that in our case, namely in
the case of a family of genus 3 non-hyperelliptic curves, the kernel K4 of σ4 is isomorphic
to the determinant bundle of the push forward of the relative dualizing sheaf

K4
∼= det(V1).

To extract the coefficients of F , we look at the projections onto the direct factors of
Sym4(V1) given by the decomposition V1 =

⊕3
i=1 Li into eigenspace bundles for real

multiplication. Let

δ(i, j, k) : K4
∼= det(V1)∼=L1⊗L2⊗L3 → Sym4(V1)→ L⊗ i1 ⊗L⊗ j2 ⊗L⊗ k3

denote the composition of the above maps. By Lemma 2.4.3,

L1⊗L2⊗L3
∼=OP1(7)

and
L⊗ i1 ⊗L⊗ j2 ⊗L⊗ k3

∼=OP1(4i+ 2j + k)

where the isomorphisms are determined by the choice of the basis (2.8). Thanks to our
choice of isomorphisms, the map δ(i, j, k) is given by a section of OP1(4i+ 2j + k − 7).
Therefore,

δ(i, j, k)(ω(1)⊗ω(2)⊗ω(3)) = ai,j,k(s) · ω(1)⊗ i⊗ω(2)⊗ j ⊗ω(3)⊗ k

where ai,j,k is a homogeneous polynomial in (s1 : s2) ∈ P1 of degree 4i+ 2j + k − 7 or 0.
By our construction, they are the coefficient of F that we were searching for.

Note that the equality
a0,0,4 = a0,1,3 = a0,2,2 = 0

can be easily deduced also from the form of the divisors of ω(i)
s given by Condition (2.7)

with a local computation around the zeroes of the differentials.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

2.4.5 Conditions from the orbifold point Since the family over C comes from a degree
9 covering of the original Teichmüller curve, the coefficients of the polynomial describing
this family must have an order 9 symmetry, which we want to understand. We use this
symmetry in order show that most of the coefficients of the polynomials ai,j,k(s1, s2)
vanish.

Proposition 2.4.7. The coefficients of the dehomogenized polynomial a4,0,0(1 : s) are all
zero with the exception of the top and the constant one, while for all the other non-trivial
triples (i, j, k), all the coefficients of ai,j,k(1 : s) are zero other than the top one, namely

ai,j,k(1 : s) =

{
α4,0,0s

9 + β, (i, j, k) = (4, 0, 0)

αi,j,ks
4i+2j+k−7, otherwise

for αi,j,k, β ∈ C.

Remark 2.4.8. The lifting of the action of the Galois group of the 9-sheeted covering
C̃ → C to an action on the family φ : X → C can be seen as follows.

A generator of the Galois group has a lift to an element of the Veech group, corresponding
to an elliptic automorphism of H of order 9. Since the Veech group embeds naturally into
the mapping class group, we obtain in fact an automorphism of the Teichmüller space T 3.
We pass to an appropriate quotientM′ of T 3 that is a fine moduli space finitely covering
M3 and such that we have a factorization C̃ → M′ and obtain an automorphism of
M′ fixing the image of C̃. By the universal property ofM′, being a fine moduli space,
this automorphism lifts to an automorphism of the universal family overM′, hence its
restriction to C̃ gives an automorphism X → X .

We fix the Galois automorphism

h : C → C, s 7→ ζ2
9 · s

of the base. The lifted automorphism H : X → X over h induces an automorphism of
V, which in the basis (2.8) is given as an element of AH ∈ PGL3(C(s)). The proof of
Proposition 2.4.7 essentially boils down to using the identity

λ · Fs(X, Y, Z) = Fh(s) ◦ AH(X, Y, Z)

with λ ∈ C×. We first need a lemma on the shape of the matrix AH .

Lemma 2.4.9. 1. H preserves the eigenspace bundles Li and thus acts on the basis
(2.8) by a diagonal matrix.

2. The matrix AH is constant and given by

AH = diag(ζ9 : ζ5
9 : ζ7

9 ) ∈ PGL3(C).

Proof. That H preserves the eigenspace bundles Li follows from the Li being irreducible
and from Schur’s Lemma. The diagonal entries of AH must be constant in s since they
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2.4 Equation of the the universal family over the Teichmüller curve

are maps between line bundles on P1 of the same degree. Hence, we just need to find the
action of AH on one fiber in order to determine it completely.

Consider now the fiber over 0, which corresponds to the curve with the order 9 automor-
phism. The lifting automorphism H : X → X must specialize to a primitive element of
the automorphism group of X 0. Thus by Corollary 2.3.2, the matrix AH must specialize
to a primitive element of the group generated by the matrix Ag. In order to determine
this element, we compute how AH acts on L1.

Since L1 is maximal Higgs, it is a Theta characteristic, i. e.

L2
1
∼= Ω1

C
.

Since the action of H on (Ω1
C

)
0
is given by multiplication by ζ2

9 , the action on (L1)0 must
be given by multiplication by ζ9. This fixes the element in the group generated by the
matrix Ag of Corollary 2.3.2, and so AH = Ag = diag(ζ9 : ζ5

9 : ζ7
9 ) ∈ PGL3(C).

Now we can use the automorphism H in order to find symmetries of the polynomial F .

Proof of Proposition 2.4.7. The existence of H implies that the fiber X s is isomorphic to
the fiber X h(s). However, since in our case we are considering canonical embeddings, we
know more, namely that the locus of the polynomial Fh(s) must be the same as the one of
Fs up to a projective linear transformation of P2. Recall that with the fixed isomorphism
P(H0(X,Ω1)∨)∼=P2 given by the choice of basis (2.8), the canonical embedding is given
by the map

ϕs : X s → P2, ϕs(x) = (ω(1)
s (x) : ω(2)

s (x) : ω(3)
s (x))

and so the projective linear transformation of P2 that we are looking for is given by the
matrix AH .

Hence the condition imposed by the existence of H is

λ · Fs(X, Y, Z) = Fh(s) ◦ AH(X, Y, Z) (2.9)

for some λ ∈ C×.

In order to compute λ, we look at the condition for the constant coefficient a0,3,1. This
coefficient cannot be zero, since it is not zero for the fiber over 1 or ∞ by Corollary 2.3.5
or Corollary 2.3.7. Condition (2.9) yields

λ · a0,3,1 = a0,3,1 · ζ3·5+7
9 = ζ4

9 · a0,3,1,

whence we have
λ = ζ4

9 .

Therefore, the other coefficients must satisfy

ζ4
9 · ai,j,k(1, s) = ζ i+5·j+7·k

9 ai,j,k(1, ζ
2
9s).

Using this condition together with Proposition 2.4.6, it is immediate to conclude.
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

2.4.6 Computation of the family Now we have gathered all the ingredients in order
to prove the main Theorem and write down the algebraic equation of the universal family
over the Kenyon-Smillie-Teichmüller curve.

Proof of Theorem 2.1.1. By Proposition 2.4.7, it is sufficient to know the values of the
coefficients ai,j,k(1 : s) in two special point in order to determine them completely.
Using the computation of ai,j,k(0 : 1) over the special point ∞ = (0 : 1) ∈ C given by
Corollary 2.3.5, we can compute all coefficients other that a4,0,0(1, s), of which we have
determined just the constant term. Now we can use Corollary 2.3.7, where we computed
the coefficients ai,j,k(1 : 1). The coefficient of the monomial X4 of (2.6) tells us the sum
of the top and the constant coefficient of a4,0,0(1 : s). The explicit form of the universal
family φ : X → C is then given by

(s9 + 1)X4 − 3s7X3Y + 6s6X3Z − 3s5X2Y 2 − 6s4X2Y Z + s3(6X2Z2 + 4XY 3)

−6s2XY 2Z + s(−6XY Z2 + 3Y 4) +XZ3 + 3Y 3Z = 0.
(2.10)

If we exclude s = 0 and s =∞, we can apply the projective linear transformation

(X : Y : Z) 7→ (X : s2Y : s3Z)

of P2 and see that the family φ : X → C indeed descends to the family φ : X → C − {0}
described by Equation (2.1).

We now identify, with a slight abuse of notation, pt with ϕt(pt) and qt with ϕt(qt), where
div(ω

(1)
t ) = 3pt + qt. Then, by Condition (2.7),

pt = (0 : 0 : 1) and qt = (0 : ∗ : ∗).

Hence, the point pt is given by the intersection of the curve X t with the line X = 0, thus
pt = (0 : 1 : −1).

2.4.7 The torsion map and the hyperflex The torsion map is the map (unique up to
multiplication by an element of C×) exhibiting the torsion condition n(Pt −Qt) = 0 ∈
Pic0(X t).

In order to compute it, we need to find a map X t → P1 totally ramified at pt and qt. In
fact, [BM12, Section 13] suggests that the degree of this map is n = 3, since this is the
case for the torsion map over the irreducible cusp.

Proof of Proposition 2.1.2. From Equation 2.1, it is easy to check that the point qt is a
hyperflex and the tangent at pt is a triple tangent passing through qt. It is trivial now
that the projection from qt onto a line is the desired torsion map. The explicit expression
of the torsion map can be given by projecting from qt onto the line {Z = 0} ⊂ P2.

It is interesting to notice how Proposition 2.1.2 can be proven without using Equation
2.1, only using that we are in the (3, 1)-stratum and that the points of the Teichmüller
curve are canonically embedded as quartics in P2.
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2.4 Equation of the the universal family over the Teichmüller curve

Alternative proof of Proposition 2.1.2. The torsion map is a degree 3 map from X t → P1

totally ramified at pt and qt. It is not diffucult to prove that every degree 3 map from a
smooth quartic of P2 to P1 is a central projection from a point x on the quartic. Since
div(ωt) = 3pt + qt and the curves St are canonically embedded, the line ptqt is a triple
tangent at pt. This triple tangent is also the projection line xpt since the torsion map is
totally ramified at pt. Hence x = qt, namely the torsion map is the central projection
from qt. Moreover, since qt is a totally ramified point of this map, it must be a hyperflex
of the quartic curve St.

2.4.8 Torsion map and real multiplication Now we want to briefly explain the relation
between the torsion map and real multiplication in the case of Veech-Ward-Bouw-Möller
Teichmüller curves and compare this situation with ours.

Let us recall the Bouw-Möller construction of the universal family H → P1 over the
completion of the Teichmüller curve uniformized by a triangle group. For simplicity,
we restrict to the case ∆(n,∞,∞) discussed in [BM10b, Section 5]. They construct a
particular family of cyclic coverings Y t → P1, parametrized by t ∈ P1−{0, 1,∞}, which
is branched over 4 points and admits an involution σ. This family descends to the
universal family H := Y /〈σ〉 → P1 over the Teichmüller curve. One can construct the
following commutative diagram

Y t
Z /2Z

��

Z /nZ // P1

��
Ht

Tor // P1

where Tor is the torsion map.

Note that, even though we constructed the above diagram starting from the upper
n-cyclic covering, one can build it also only from the torsion map, since this is indeed
its Galois normalization diagram. The relation between real multiplication and torsion
map is now easy to explain. Let τ : Y t → Y t be the Galois automorphism of Y t → P1.
It induces complex multiplication by Q(ζn) on the Jacobian of Y t. One can check that
real multiplication is given by the push-forward to Ht of the correspondence induced by
the graph of the endomorphism τ + τ ∗ ∈ EndQ Jac(Y t), which generates the totally real
subfield of Q(ζn).

Since by Proposition 2.1.2 we know the explicit form of the torsion map in the Kenyon-
Smillie-Teichmüller curve case, we can compute its Galois normalization and check
if real multiplication comes from a diagram analogous to the one constructed in the
Veech-Ward-Bouw-Möller case.

Note that one can easily compute the ramification points of the torsion map. There
are the two expected triple ramification points Tor(Qt) and Tor(Pt) and other 6 double
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

ramification points, which we denote by xi(t) ∈ P1 for i = 1, . . . , 6. Let Zt be the genus
2 curve defined by the affine equation

Zt : v2 =
6∏

i=1

(x− xi(t)).

By general considerations on how the Galois normalization has to behave on the ramifi-
cation points of the map Tor, we find that the normalization diagram is given by the
fibered product diagram

Y t

��

Z /3Z // Zt
p
��

X t
Tor // P1

where Y t := X t×P1Zt is the fibered product. The map

p : Zt → P1, (x, v) 7→ v

is the quotient by the hyperelliptic involution, thus it is ramified over the points xi.

Now we want to show that real multiplication cannot be constructed from the Galois
normalization diagram of the torsion map as in the Veech-Ward-Bouw-Möller case.

Proposition 2.4.10. Real multiplication is not given by a correspondence induced by
the graph of an automorphism of Y t that descends to the quotient Zt.

Proof. Recall that the trace field of the Kenyon-Smillie-Teichmüller curve is cubic. Hence
if real multiplication is given by a totally real subfield of the complex field induced
by an automorphism of Y t, this automorphism has to be of order 9. Since the Galois
automorphism of Y t → Zt is of order 3, this cannot work. We can already see that this
is not as in the Bouw-Möller case.

Consider now an order 9 covering automorphism of Y t descending to the quotient Zt.
Since the order of the descending automorphism on Zt has to divide 9, then it has to be
of order 3 because there are no order 9 automorphisms of a genus 2 curve. We show that
there is no such automorphism of Zt.

Recall that p : Zt → P1 is the hyperelliptic family. Hence if there were an order 3
automorphism of Zt, it would commute with the hyperelliptic involution and thus would
descend to multiplication by a 3rd root of unity on P1 in the appropriate coordinates.
Since the 6 ramification points xi(t) must be preserved by the automorphism, they
have to lie on two circles (any change of coordinates of P1 preserves circles). Using
Proposition 2.1.2, one can however compute explicitly xi(t) and check that this is not
the case.
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2.5 Picard-Fuchs equations

2.5 Picard-Fuchs equations

In this section, we forget how we found Equation (2.1) and we prove independently that
this equation defines a Teichmüller curve. We will do this by showing that the absolute
cohomology bundle splits as a direct sum of three rank two subbundles and that one of
them is maximal Higgs. The main tool is the computation of the Picard-Fuchs equation
associated to a local section of the (1, 0)-part of the absolute cohomology bundle of the
family via the Griffiths-Dwork method.

2.5.1 Griffiths-Dwork method We quickly recall the Griffiths-Dwork algorithm for the
computation of the Picard-Fuchs equation of a family of projective hypersurfaces. This
method can more generally be used in the case of projective toric varieties. See [CK99]
for more details.

Let V ⊂ Pn be a hypersurface of degree d defined by a homogeneous equation f = 0. We
want to identify elements of Hn−1(V ) with elements in Hn(Pn−V ) via the residue map.
Any element of Hn(Pn−V ) can be represented by a form

PΩ0

fk
, deg(P ) = kd− (n+ 1)

where Ω0 is a section of the sheaf Ωn
Pn(n + 1), which in fact is trivial, and P is a

homogeneous polynomial. The residue map

Res : Hn(Pn−V )→ Hn−1(V )

is defined by the property that
∫

γ

Res

(
PΩ0

fk

)
=

∫

T (γ)

PΩ0

fk

for any (n− 1)-cycle γ in V and its tubular neighborhood T (γ).

Let J(f) := 〈∂f/∂x0, . . . , ∂f/∂xn〉 be the Jacobian ideal of V . The key ingredient of the
Griffiths-Dwork method is the isomorphism

(
C[x0, . . . , xn]

J(f)

)

kd−(n+1)

∼= P Hn−k,k−1(V ) for k = 1, . . . , n

where the subscript denotes the kd − (n + 1)-graded piece and P Hn−k,k−1(V ) is the
primitive part of Hn−k,k−1(V ).
In other words, if a form PΩ0

fk
has a high order pole, namely if k > n, we can find a

representative of its cohomology class with a pole of order less than n. The key equality
that allows to compute representatives with lower order poles is given by

(∑

i

Gi
∂f

∂xj

)
Ω0

fk
=

1

k − 1

(∑

i

∂Gi

∂xj

)
Ω0

fk−1
∈ Hn(Pn−V ). (2.11)
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

Now consider a family of hypersurfaces {Vs} defined by a varying polynomial fs, and a
form represented by ωs = PsΩ0

fks
. The action of the Gauss-Manin connection is given by

∇(
∂

∂s
)(ωs) =

(−kPsf ′s + fsP
′
s)Ω0

fk+1
s

.

If we iterate the derivation many times, we find a form with poles of order greater than
n. We can then find a representative of its cohomology class with a lower order pole by
using Equation 2.11.

2.5.2 Picard-Fuchs equations of the family The Picard-Fuchs equation of a family
of curves with respect to a local section of the (1, 0)-part of its cohomology bundle
is the differential equation satisfied by the periods of the chosen local section. The
set of solutions of the Picard-Fuchs equation forms a local system isomorphic to the
dual of the local system associated with the irreducible part of absolute cohomology
bundle containing the chosen local section. Therefore Picard-Fuchs equations characterize
the local system underlying the absolute cohomology bundle in a unique way. A nice
exposition of Picard-Fuchs equations can be found in [BM10b, Section 3]. We will now
prove Proposition 2.1.3 using the Griffiths-Dwork method.

Proof of Proposition 2.1.3. Let φ : X → C be the family of curves described by Equa-
tion (2.10). We use this family since it has unipotent monodromy around the 10 cusps.
This will be useful when we check that the absolute cohomology bundle has a maximal
Higgs rank 2 subbundle.

Let Fs be the polynomial describing X s ⊂ P2. Let D := ∇( ∂
∂s

), where ∇ is the Gauss-
Manin connection.

Let ω be a local section of the (1, 0)-part of the cohomology bundle at 0 ∈ P1. Since the
cohomology bundle is of rank 6, the local section ω must a priori satisfy

a0ω + a1D(ω) + · · ·+D6(ω) = 0

where ai, i = 0, . . . , 5, is a rational function in s with poles of order at most 6− i. The
associated differential equation

a0y + a1
∂y

∂s
+ · · ·+ ∂6y

∂s6 = 0

is satisfied by the periods s 7→
∫
γ
ω(s) for any locally constant 1-cycle γ of X s.

We now want to use the identification of H1(X s) with H2(P2−X s) via the residue map,
and in particular the isomorphisms

(
C[X, Y, Z]

J(Fs)

)

4k−3

∼= H2−k,k−1(X s), k = 1, 2.

Note that in this case the primitive part is the full cohomology space.
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Using the above identifications, one can check that a basis for the cohomology groups is
given by

H1,0(X s) = 〈XΩ0

Fs
, Y

Ω0

Fs
, Z

Ω0

Fs
〉, H0,1(X s) = 〈X5 Ω0

F 2
s

, Y 5 Ω0

F 2
s

, Z5 Ω0

F 2
s

〉

where the coefficient of Ω0

Fks
are considered modulo the Jacobian ideal.

We fix the local section ω(s) = X Ω0

Fs
and we want to find the differential equation satisfied

by the periods of ω. A priori, we are searching for an order 6 differential equation, but
we can check that indeed ω(s) satisfies an order 2 differential equation. We want to find
rational functions a0 and a1 such that

a0(s)

∫
X

Ω0

Fs
+ a1(s)

∫
∂

∂s

(
X

Ω0

Fs

)
+

∫
∂2

∂s2

(
X

Ω0

Fs

)
= 0.

We can get rid of the integral sign and rewrite the above equation in De Rham-cohomology
as

a0(s)X
Ω0

Fs
− (a1(s)F ′(s) + F ′′(s))X

Ω0

F 2
s

+ 2F ′(s)
2
X

Ω0

F 3
s

= 0 ∈ H1(X s).

Now we begin to apply Griffiths-Dwork method.

We can check that 2F ′(s)2X is in the Jacobian ideal J(Fs). Hence we can apply
Equality (2.11) and compute

2F ′(s)
2
X

Ω0

F 3
s

=

(
G1
∂Fs
∂X

+G1
∂Fs
∂Y

+G1
∂Fs
∂Z

)
Ω0

F 3
s

=
1

2
G

Ω0

F 2
s

∈ H1(X s)

for G =
(
∂G1

∂X
+ ∂G2

∂Y
+ ∂G3

∂Z

)
, where the Gi(s) are some homogeneous polynomials in

function of the rational parameter s.

We can now compute that

−XF ′s =
9

s
X5,

1

2
G− F ′′sX = − 81s7

s9 − 1
X5 in

C[X, Y, Z]

J(Fs)
.

Hence, we must have that

a1(s) =
9s8

s9 − 1
.

By our choice of a1(s), we have

−(a1(t)F ′(s) + F ′′(s))X
Ω0

F 2
s

+ 2F ′(s)
2
X

Ω0

F 3
s

= H
Ω0

F 2
s

∈ H1(X s)

for some H =
(
H1

∂Fs
∂X

+H2
∂Fs
∂Y

+H3
∂Fs
∂Z

)
∈ J(Fs).

Therefore, we can apply Equation 2.11 again finding that

H
Ω0

F 2
s

=

(
∂H1

∂X
+
∂H2

∂Y
+
∂H3

∂Z

)
Ω0

Fs
= − 16s7

s9 − 1
X

Ω0

Fs
∈ H1(X s).
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2 The Equation of the Kenyon-Smillie (2, 3, 4)-Teichmüller curve

Hence, by setting

a0(s) =
16s7

s9 − 1

we are done.

Since we have found a differential equation of order 2, we have proved that the absolute
cohomology bundle has a subbundle of rank 2, whose dual is isomorphic to the space of
solution of the differential equation

16s7

s9 − 1
y +

9s8

s9 − 1
y′ + y′′ = 0 (2.12)

which has indeed regular singularities at the 9-th roots of unity and at infinity. It is
easy to show that this differential equation is the pull-back of a unique hypergeometric
differential equation

L1(y) =
16

81t(t− 1)
y +

17t− 8

9t(t− 1)
y′ + y′′ = 0

under the map s 7→ t = s9, which is the one in the statement of Proposition 2.1.3

Using the same algorithm, one can compute the differential equations satisfied by
ω(s)(2) = Y Ω0

Fs
and ω(s)(3) = Z Ω0

Fs
and check that they are respectively the pull-back

under the map s 7→ t = s9 of the unique differential equations

L2(y) =
4

81t(t− 1)
y +

13t− 4

9t(t− 1)
y′ + y′′ = 0

L3(y) =
1

81t(t− 1)
y +

11t− 2

9t(t− 1)
y′ + y′′ = 0.

Hence we have proved that the cohomology bundle splits as a sum of three rank 2
subbundles.

Now, we want to prove that the local system defined by the differential equation L1(y) = 0,
or equivalently by the differential equation (2.12), is maximal Higgs.

Proof of Corollary 2.1.4. We can use [BM10b, Proposition 3.2] which relates the order of
vanishing of the Kodaira-Spencer map to the local exponent of the associated differential
equation in the case of unipotent monodromy. One can easily compute the local exponent
of the differential Equation (2.12) and see that the Riemann scheme is given by

ζ1
9 ζ2

9 ζ3
9 ζ4

9 ζ5
9 ζ6

9 ζ7
9 ζ8

9 ζ9
9 ∞

0 0 0 0 0 0 0 0 0 4
0 0 0 0 0 0 0 0 0 4

Since Equation (2.12) corresponds to a family with unipotent monodromies, by [BM10b,
Proposition 3.2], the order of vanishing of the Kodaira-Spencer map at these cusps is
0. Hence by definition, the associated local system is maximal Higgs and it has to be
irreducible.
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2.5 Picard-Fuchs equations

By [Möl06b, Theorem 5.3], if the absolute cohomology bundle associated to a family
of curves over C has a maximal Higgs rank two subbundle, then the family is a finite
unramified covering of a Teichmüller curve. By Proposition 2.1.3, this is the case for the
family of curves described by Equation (2.1).
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Zusammenfassung

Lyapunov-Exponenten sind charakteristische Zahlen, die das Verhalten eines Kozykels
über einem dynamischen System beschreiben. Wenn der Kozykel eine Integrierbarkeits-
eigenschaft erfüllt, liefert der Satz von Oseledets eine Zerlegung des unterliegenden
Vektorbündels, so dass die Norm der Vektoren in jeder Komponente mit unterschiedlicher
Geschwindigkeit entlang des Flusses wächst. Die verschiedenen möglichen Wachstumsra-
ten werden Lyapunov-Exponenten genannt.

Ein interessantes Beispiel für ein dynamisches System ist das Billardspielen auf polygona-
len Tischen. Lyapunov-Exponenten beschreiben die Diffusionsrate der Bahnen des Balles.
Selbst in diesem speziellen Fall sind Lyapunov-Exponenten sehr schwer zu berechnen,
zumindest wenn man sich auf die Werkzeuge der klassischen Ergodentheorie beschränkt.
Überraschenderweise kann man die algebraische Geometrie ins Spiel bringen und diese
erlaubt es manchmal, die mit einem Billard verbundenen Lyapunov-Exponenten zu
berechnen. Der erste wichtige Baustein der Brücke zwischen dem Lyapunov-Exponenten
und der algebraischen Geometrie ist durch flache Flächen gegeben. Trajektorien auf einem
polygonalen Billardtisch können mit Geodäten bezüglich der flachen Metrik identifiziert
werden, die kanonisch auf der Riemannschen Fläche, die man durch Verkleben der Seiten
des Polygons erhält, definiert ist. Eine solche flache Metrik auf einer Riemannschen
Fläche kann wiederum mit einem abelschen Differential identifiziert werden, das heißt mit
einer globalen holomorphen 1-Form. Die Menge flacher Flächen vom Geschlecht g kann
zu einem algebraischen Modulraum gemacht werden, dem Hodge-Bündel ΩMg. Dieser
Modulraum hat eine natürliche Stratifizierung durch Vorgabe der Nullstellenordnungen
der Differentiale. Auf jedem Stratum gibt es ein natürliches Wahrscheinlichkeitsmaß,
das Masur–Veech-Volumen. Die natürliche SL2(R)-Wirkung auf diesem Raum, die durch
Scherung des Polygons gegeben ist, ist ergodisch und ein wichtiges Ergebnis von Eskin
und Mirzakhani liefert eine einfache Beschreibung der Bahnabschlüsse in geeigneten
Koordinaten. Diese Bahnabschlüsse werden affine invariante Untermannigfaltigkeiten des
Hodge-Bündels genannt. Filip konnte sogar zeigen, dass affine invariante Untermannigfal-
tigkeiten algebraisch sind. Da eine affine invariante Untermannigfaltigkeit eine Familie
Riemannscher Flächen beschreibt, gibt es darauf eine zugehörige kanonische Variation
von Hodge-Strukturen vom Gewicht eins, die durch das flache Vektorbündel gegeben ist,
dessen Faser über einer Riemannschen Fläche X die Kohomologie H1(X,C) ist. Überra-
schenderweise sind die Lyapunov-Exponenten, die als Diffusionsraten von Billardbahnen
auf (X,ω) gegeben sind, dieselben wie die, die durch die asymptotische Wachstumsrate
der Hodgenorm von Vektoren in der Variation von Hodge-Strukturen über dem Fluss auf
der affinen invarianten Mannigfaltigkeit SL2(R)(X,ω) definiert sind. An diesem Punkt
kommt die algebraische Geometrie ins Spiel: Eskin, Kontsevich und Zorich [EKZ11]
zeigten, dass die Summe der positiven Lyapunov-Exponenten des Kontsevich-Zorich-
Kozykels über einer affinen invarianten MannigfaltigkeitM als der normalisierte Grad
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des aufM eingeschränkten Hodge-Bündels berechnet werden kann. Die überraschende
Konsequenz ist, dass Zahlen, die nur über ein dynamisches System definiert wurden, die
also keinen Grund haben, rational zu sein, tatsächlich der Grad eines Vektorbündels
sind. Außerdem verbindet dies die Lyapunov-Exponenten mit anderen interessanten
Invarianten, wie beispielsweise dem Masur-Veech-Volumen der Strata von ΩMg oder den
Siegel-Veech-Konstanten.

Ausgehend von Billards wurden Methoden der algebraischen Geometrie verwendet, um
allgemeinere Lyapunov-Exponenten zu studieren. Beispielsweise bewiesen Kappes und
Möller in [KM16] ein analoges Ergebnis zu dem von [EKZ11] für die Gewicht-1-Variationen
von Hodge-Strukturen über Ballquotienten. Dieses Ergebnis erlaubte ihnen unter anderem,
Fragen der Kommensurabilität von Gittern zu beantworten. Später zeigte Filip [Fil14]
ein ähnliches Ergebnis für Variationen von Hodge-Strukturen, die durch eindimensionale
Familien von K3-Flächen gegeben sind. Variationen von Hodge-Strukturen sind ein
Spezialfall flacher Vektorbündel, die durch eine spezielle Filtrierung und eine kompatible
Hodgenorm ausgezeichnet sind. Lyapunov-Exponenten können jedoch für ein allgemeines
flaches Vektorbündel definiert werden. In [EKMZ18] haben Eskin, Kontsevich, Möller
und Zorich die Summe der ersten k Lyapunov-Exponenten eines allgemeinen flachen
Vektorbündels von unten durch den normalisierten Grad eines holomorphen Unterbündels
vom Rang k beschränkt.

Das Hauptziel dieser Arbeit ist die Untersuchung von Lyapunov-Exponenten für all-
gemeine flache Vektorbündel über Riemannschen Flächen durch eine Verallgemeine-
rung des Hauptergebnisses von [EKMZ18] und die Beschreibung von Eigenschaften von
Lyapunov-Exponenten an speziellen Loci des Modulraumes flacher Vektorbündel. Des
Weiteren zeigen wir, wie die Kenntnis der Lyapunov-Exponenten über einer sporadi-
schen Teichmüller-Kurve verwendet werden kann, um die algebraische Gleichung der
universellen Familie darüber zu berechnen.

Im Kapitel 1 erinnern wir zunächst an die Riemann-Hilbert- und Simpson-Korrespondenzen,
die eine Kategorie-äquivalenz zwischen flachen Vektorbündeln über einer Riemannschen
Fläche C, reduktiven Darstellungen der Fundamentalgruppe von C und polystabilen Higgs-
Bündeln auf C mit verschwindenden Chern-Klassen definieren. Diese Korrespondenzen,
die auch einen Homöomorphismus der entsprechenden Modulräume induzieren, erlauben
es, Lyapunov-Exponenten als Funktionen auf diesen Modulräumen zu untersuchen. Der
Modulraum von Darstellungen wird als Betti-Modulraum oder Charaktervarietät, der
von flachen Bündeln als de-Rham-Modulraum bezeichnet. In Rang 2 wird die Sichtweise
projektiver Strukturen nützlich sein, um zusätzliche Informationen zu erhalten. Die
Hauptergebniss des Kapitels ist eine Verallgemeinerung des Ergebnisses von [EKMZ18].

Theorem (Theorem 1.7.13). Sei V ein holomorphes flaches Bündel über einer hyperboli-
schen Riemannschen Fläche C = C \∆. Dann gilt für jedes holomorphe Unterbündel
E ⊂ V vom Rang k,

k∑

i=1

λi ≥
2 degpar(Ξh(E))

deg(Ω1
C

(log(∆))
+ ErrE(u)
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für fast alle x ∈ C und Lebesgue-fast alle u ∈ ∧k V∨x . Dabei ist der Fehler durch

ErrE(u) = 4π lim
T→∞

1

T

∫ T

0

]{s−1
E (keru) ∩Dt}

vol(Dt)
dt

gegeben. Hierbei bezeichnet degpar(Ξh(E)) den parabolischen Grad der metrischen Fort-
setzung von E, sE : H → P(

∧k Vx) die holomorphe klassifizierende Abbildung, die E,
definiert und Dt einen hyperbolische Kreisscheibe vom Radius t um einen Lift von x in
der hyperbolischen Ebene.

Der Beweis des obigen Satzes lässt sich auf Variationen von Hodge-Strukturen vom
Gewicht eins über Ballquotienten oder affinen invarianten Untermannigfaltigkeiten des
Hodge-Bündels verallgemeinern.

Im Falle einer kompakten Basiskurve können wir sogar folgendes zeigen.

Theorem (Theorem 1.8.1). Wenn die Riemannsche Fläche C kompakt ist, ist die obige
Ungleichung eine Gleichheit.

Diese Ergebnisse können als eine Verallgemeinerung des Hauptergebnisses von [DD15]
angesehen werden, wobei Deroin und Dujardin Lyapunov-Exponenten von Holonomi-
en projektiver Strukturen im Zusammenhang mit dem Fluss, der aus der Brownschen
Bewegung hervorgeht, definieren und diese mit dem Grad der zugehörigen Entwicklungs-
abbildung in Beziehung setzen. Darüber hinaus können die obigen Ergebnisse auch mit
dem Hauptergebnis von [DD17a] verglichen werden, in dem Daniel und Deroin eine
ähnliche Gleichheit im Kontext des Brownschen Bewegungsflusses über einer Kähler-
Mannigfaltigkeit erhalten. Sie beweisen, dass die Summe der ersten Lyapunov-Exponenten
gleich der Summe eines normalisierten Grades und eines dynamischen Grades ist; als
Konsequenz erhält man, dass der oben definierte Fehlerterm ErrE(u), der die gleiche Form
wie der Überlagerungsgrad aus [DD15] hat, derselbe ist, wie der in [DD17a] definierte
dynamische Grad.

Lyapunov-Exponenten sind nicht die einzigen Invarianten von Darstellungen, die man auf
Charaktervarietäten definieren kann. Wir erinnern hier an die Toledo-Invariante, die für
Darstellungen in Lie-Gruppen vom hermiteschen Typ definiert ist, oder den kritischen
Exponenten, der für Darstellungen nach SLn(R) definiert ist. Weitere Invarianten wie die
Entropie oder die Minimalfläche sind eng mit dem kritischen Exponenten verbunden, vor
allem in den Hitchin-Komponenten, wo sie ähnlichen Schranken genügen. Das Erreichen
dieser Schranken charakterisiert die symmetrischen Potenzen Fuchs’scher Darstellungen.
Darüber hinaus vermuten wir auf Grund von Computer-Experimenten, dass der oberste
Lyapunov-Exponent ähnliche Schranken wie der kritische Exponent genügt. Die genaue
Beziehung zwischen Lyapunov-Exponenten und den anderen erwähnten Invarianten ist
zwar immer noch spekulativ, aber das geometrische Oseledets-Theorem liefert eine hilfrei-
che Sichtweise. Der Hauptunterschied liegt in der Tatsache, dass Lyapunov-Exponenten
auf dem de-Rham-Modulraum natürlich definiert sind, da sie von der komplexen Struktur
der Basis-Riemannschen Fläche abhängen, während die anderen erwähnten Invarianten
auf der Charaktervarietät natürlich definiert sind, da sie nur von der Darstellung der
Fundamentalgruppe abhängen.
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Wir konzentrieren uns nun auf die Eigenschaften von Lyapunov-Exponenten auf speziellen
Loci des De-Rham-Modulraums. Wir erinnern an die Existenz einer Stratifizierung vom
Harder-Narasimhan-Typ, der Shatz-Stratifizierung. Durch Identifikation des maximalen
Stratums mit dem Oper-Locus erhalten wir eine explizite Untergrenze der Lyapunov-
Exponenten auf diesem Stratum. Mit Hilfe eines neuen Resultats [DF18] bezüglich der
Oper-Loci können wir beweisen, dass der oberste Lyapunov-Exponent unbeschränkt ist.

Theorem (Theorem 1.9.2). Der oberste Lyapunov-Exponent ist auf jedem Oper-Locus
unbeschränkt. Das Wachstum ist in der Nähe des Randes der Charaktervarietät logarith-
misch.

Der nächste interessante Ort, den es zu untersuchen gilt, ist die Menge der flachen
Bündel, die den Variationen von Hodge-Strukturen zugrunde liegen. Wir zeigen eine
leichte Verallgemeinerung der Ergebnisse von [EKZ11] und [Fil14] unter Verwendung einer
allgemeinen Bedingung für das Verschwinden des Fehlerterms. Wir zeigen auch, dass die
Trivialität des Lyapunov-Spektrums impliziert, dass die Variation von Hodge-Strukturen
unitär ist und dass für Variationen von Hodge-Strukturen positiven Gewichts der erste
Term der Hodge-Filtrierung eine nichttriviale untere Schranke für die Summe der ersten
Exponenten induziert.

Schließlich konzentrieren wir uns auf den Rang-2-De-Rham-Modulraum und beschreiben
die Shatz-Stratifizierung und die Loci der Variationen von Hodge-Strukturen genauer.
Durch Identifikation des Oper-Locus mit der Menge der Holonomien projektiver Struktu-
ren, die dieselbe komplexe Struktur induzieren, geben wir eine Verallgemeinerung des
Hauptergebnisses von [DD17b].

Im Kapitel 2 berechnen wir die algebraische Gleichung der universellen Familie über einer
der beiden sporadischen Teichmüller-Kurven, der Kenyon-Smillie-(2, 3, 4)-Teichmüller-
Kurve. Dies ist eine gemeinsame Arbeit mit André Kappes und ist als [CK17] erschienen.

Teichmüller-Kurven sind Projektionen abgeschlossener SL2(R)-Bahnen im Hodge-Bündel
nachMg und sind somit abgeschlossene algebraische Kurven im Modulraum von Kurven.
Möller hat in [Möl06b] gezeigt, dass Teichmüller-Kurven, wie Shimura-Kurven, durch die
spezielle Form ihrer Variation von Hodge-Strukturen charakterisiert werden können. Die
Kenyon-Smillie-Teichmüller-Kurve parametrisiert alle affinen Deformationen (St, ωt) der
Translationsfläche (S, ω) ∈ ΩM3(3, 1), die durch Entfalten eines euklidischen Dreiecks mit
Winkeln (2π

9
, 3π

9
, 4π

9
) entsteht. Diese wurde von Kenyon und Smillie [KS00] entdeckt, die

bewiesen, dass (S, ω) eine Veech-Fläche mit Veech-Gruppe die Dreiecksgruppe ∆(9,∞,∞)
ist. Die Translationsfläche (S, ω) ist ein Orbifoldpunkt der Ordnung 9 der zugehörigen
Teichmüller-Kurve, die durch H /∆(9,∞,∞) uniformisiert wird.

Theorem (Theorem 2.1.1). Die universelle Familie über dem Komplement des Orbifold-
Punkts der Kenyon-Smillie-(2, 3, 4)-Teichmüller-Kurve ist durch die Familie ebener Quar-
tiken gegeben, die durch die Gleichung

X4 + t(X4 − 3X3Y + 6X3Z − 3X2Y 2 − 6X2Y Z + 6X2Z2 + 4XY 3

−6XY 2Z − 6XY Z2 +XZ3 + 3Y 4 + 3Y 3Z) = 0
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mit t in P1−{0, 1,∞} definiert ist.
Die dreifache Nullstelle des Differentials ωt ist der Punkt pt = (0 : 0 : 1) ∈ St und die
einfache Nullstelle ist der Punkt qt = (0 : 1 : −1) ∈ St.

Wie oben ist das Studium der Variation von Hodge-Strukturen über der Teimchüller-Kurve
und ihrer Harder-Narasimhan-Filtrierung von zentraler Bedeutung. Tatsächlich sind die
Charakterisierung von Teichmüller-Kurven über ihre assoziierte Variation von Hodge-
Strukturen aus [Möl06b] und die Beschreibung des zugehörigen Harder-Narasimhan-Typs,
der in [YZ13] berechnet wird, die wichtigsten verwendeten Werkzeuge.

Da es sich in diesem Fall um eine Familie von Hyperflächen handelt, können wir die
Griffiths-Dwork-Methode verwenden, um die Picard-Fuchs-Gleichungen zu berechnen,
die zu dieser Familie gehören.

Proposition (Proposition 2.1.3). Die Perioden von ωt sind Lösungen der folgenden
Differentialgleichung:

16

81t(t− 1)
y +

17t− 8

9t(t− 1)
y′ + y′′ = 0.

Das lokale System, das durch die Lösung dieser Differentialgleichung definiert ist, ent-
spricht einem irreduziblen Rang 2 Unterbündel der Variation von Hodge-Strukturen der
Teichmüller-Kurve. Indem wir die lokalen Exponenten der obigen Differentialgleichung
mit der Verschwindungsordnung des Higgs-Felds, das der Variation von Hodge-Strukturen
zugeordnet ist, in Beziehung setzen, beweisen wir, dass das lokale System, das durch die
obige Gleichung definiert ist, der uniformisierenden Darstellung der Teichm’́uller-Kurve
entspricht. Durch die Charakterisierung von Teichmüller-Kurven aus [Möl06b] haben wir
einen unabhängigen Beweis, dass die Gleichung, die wir berechnet haben, tatsächlich die
der universellen Familie über einer Teichmüller-Kurve ist.
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