
Appendix A. The role of the splitting field

This appendix contains some more information about the fields of definition of
Shimura congruence curves of prime power level.

Theorem 6. Under the assumptions of Lemma 8, but with the possible excep-
tion of the case ∆ = ∆(3, 4, 6) , M(S) is the splitting field of p in k, that is the
fixed field of all σ ∈ Gal k/Q fixing the prime ideals pj | p . The action of the
absolute Galois group on these principal congruence subgroup Shimura curves is the
same as the action on the level ideals: if the principal congruence subgroup ∆(pn)
is the surface group of S := Spn , ∆(σ(pn)) is the surface group ∆(pn)σ of Sσ .
The field of moduli M(S) coincides with the field of moduli M(D) of the maximal
regular dessin on S .

This splitting field can also be considered as the smallest subfield of k (of degree
g ) in which p splits in g prime ideals (in this splitting field necessarily of residue
class degree 1).

Proof. 1. With Lemma 7, the result clearly extends from p to all prime power
levels pn, so we will consider only the case n = 1 . Another simplification comes
from Lemma 1: since ∆ is maximal, we have in fact M(D) = M(S) . So it is
sufficient to care about M(S) .

2. As a preparatory step, we need to learn more about the full automorphism
group G := ∆/∆(p) of S := Sp . All triangle groups in question are either the
norm 1 groups Φ mentioned in Lemma 8 or extensions of them of degree 2 or 4 . In
a few cases, Φ is not a triangle group itself but a quadrangle group. The extensions
are generated by integer elements δ ∈ A of totally positive norm ν ∈ k , either a
prime dividing the discriminant D(A) or a non–square unit of k . The arithmetic
in A implies that δ normalizes congruence subgroups ∆(p) as well. If q denotes
the norm N(p) and if ∆ is generated by Φ and δ , then Φ/∆(p) ∼= PSL(2,Fq)
and ∆/∆(p) ∼= PSL(2,Fq) × C2 or ∼= PGL(2,Fq) depending on the alternative
whether the (reduced quaternion) norm N(δ) mod p is a square in Fq or not. If ∆
is an index 4 extension of Φ , the quotient ∆/∆(p) is ∼= PSL(2,Fq)× C2 × C2 or
∼= PGL(2,Fq)×C2 by a similar argument (we learned this idea from A. Džambić).

3. By the arguments already used in the proof of Lemma 8, we know that
the quasiplatonic surfaces Spj , j = 1, . . . , g , form a family F invariant under

the action of the absolute Galois group Gal(Q) , so the splitting number g is an
upper bound for the length of the Galois orbit of S . We can suppose that all
these surfaces are equipped with the dessins induced by the maximal triangle group
∆ ◃ Φ ◃∆(pj) of signature (r, s, t) . Let p be one of these prime ideals. Let G be
the automorphism group of S := Sp , generated by the elements g0, g1, g∞ of
respective orders r, s, t , images of the canonical generators γ0, γ1, γ∞ of ∆ under
the canonical epimorphism

h : ∆ → ∆/∆(p) ∼= G .

If g1 , say, has a fixed point P ∈ S and acts in suitable local coordinates on a
neighbourhood of P like

g1 : z 7→ ζvs · z ,

we call ζvs the multiplier of g1 in P . Clearly, v is coprime to s . The collections of
all pairs

(ζur , nr,u) , (ζvs , ns,v) , (ζwt , nt,w)
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are called the multiplier data of (G, g0, g1, g∞) on S where we denote by nr,u the
number of all fixpoints of g0 on S with multiplier ζur , and so on.

4. As next step we show how the action of the absolute Galois group on the
family F induces an action on the multiplier data. For all σ ∈ Gal(Q) the multiplier
data of (Gσ, gσ0 , g

σ
1 , g

σ
∞) arise from the original ones by an obvious action of σ on

the multipliers, see [4] or [3]. We can simplify the consideration of this Galois
action on the multiplier data in two ways. First, we can neglect all multipliers with
(say) r = 2 because Gal(Q) acts trivially on ζ2 = −1 . Second, we can exclude all
primes p from the consideration in our theorem which divide one of the entries of
the signature of ∆ : a case–by–case analysis of all 19 triangle groups in question (see
Table (3) of [5]) shows that this possibility occurs only if p and the discriminant
ideal D(A) of the algebra have a nontrivial common divisor or – much more often
– if the splitting number of p in k is g = 1 , so Corollary 2 applies. Instead of a
tedious list we give two typical examples.

a) ∆ = ∆(2, 5, 6) with k = Q(
√
5) . Here, 2 divides the discriminant of the

algebra, 3 is inert and 5 is ramified.
b) ∆ = ∆(2, 5, 30) with k = Q(cos π

15 ) , the maximal real subfield of Q(ζ15) , is
a bit more complicated. The prime 3 divides the discriminant D(A) . The Galois
group of Q(ζ15)/Q is isomorphic to (Z/15Z)∗ ∼= {±1 mod 15}×{1, 2, 4, 8 mod 15} ,
and k is the fixed field of the first factor, and therefore

Gal(k/Q) ∼= (Z/15Z)∗/{±1} ∼= {1, 2, 4, 8 mod 15} .

This second factor is generated by the Frobenius automorphism for the prime 2 , so
this prime is inert in k . Finally, the prime 5 is totally ramified already in the subfield
Q(ζ5) and inert in the subfield Q(ζ3) , hence it has in Q(ζ15) the decomposition
5Z[ζ15] = P4 with one prime ideal P < Z[ζ15] of residue degree 2 . Because the
splitting number of 5 is g = 1 in Q(ζ15) , it is also 1 in its subfield k .

The primes not dividing the signature entries have the advantage that they
cannot belong to parabolic generators of SL(2,Fq) or GL(2,Fq) ; these are the only
ones having eigenvalues of multiplicity 2 . So, for the other primes p our generators
gi (that is g0, g1 or g∞) are non–parabolic, therefore gi is conjugate in G to g±1

i

but to no other power of gi – an easy consequence of the structure of SL(2,Fq) and
GL(2,Fq) , compare the eigenvalues of their matrices and the respective arguments
already used in [4] and [2]. By construction of (say) gi = g∞ = h(γ∞) by means of
the canonical epimorphism h , the fixpoint u ∈ H of γ∞ gives at least one fixpoint
P = ∆(p)u ∈ S = ∆(p)\H with multiplier ζt . Now suppose that g∞ fixes another
point Q ∈ S , then this is a fixed point of the same order because ∆ is maximal and
so the orders of the generators of G (the signature entries) are pairwise different.
So, Q and P are both face centers of the dessin (or vertices of the same colour in
the cases i = 0, 1 ). By the transitivity of G there is an automorphism a ∈ G with
a(P ) = Q , therefore a−1g∞a fixes P as well, hence is conjugate to a power of g∞ ,
and we know that here g±1

∞ are the only possible powers. Since the multiplier of
g∞ in Q is the same as that of a−1g∞a in P , it has to be ζ±1

t . The only possible
contribution of g∞ to the multiplier data are therefore the pairs

(ζt, nt,1) and (ζ−1
t , nt,−1) .
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In the following, we will therefore always assume (without loss of generality, see
above) that p is coprime to r, s, t . As a consequence, p is unramified in all cy-
clotomic fields in question, hence also unramified in k , see the next step of the
proof.

5. By the same proof as in [4] we can moreover see that nt,1 = nt,−1 : consider
the canonical representation ψ of G on the space of holomorphic differentials of S .
Since g∞ is conjugate to g−1

∞ , and since

trψ(g∞) = trψ(g−1
∞ ) = trψ(g∞)−1 = trψ(g∞) ,

ψ(g∞) has a real trace. On the other hand, Eichler’s trace formula

trψ(g∞) = 1 + nt,1
ζt

1− ζt
+ nt,−1

ζ−1
t

1− ζ−1
t

gives a real value if and only if nt,1 = nt,−1 , so the multiplier system is invariant

under complex conjugation. Obviously, the action of Gal(Q) on the multiplier data
corresponds therefore to the action on Q(cos 2π

r , cos
2π
s , cos

2π
t ) , and this is precisely

the center field k of the quaternion algebra A for all maximal arithmetic triangle
groups except ∆(3, 4, 6) . This can again be seen via a case–by–case analysis along
the lines of Takeuchi’s Table (3) in [5]. Two consequences are important: first, k <
Q(ζr, ζs, ζt) , therefore (by the assumptions justified in step 4 of the proof) p is also
unramified in k ; in other words, the exponent e = 1 in the prime decomposition
of Lemma 8. Second, on Sσ the contribution of the Galois conjugate generator gσ∞
with σ(ζt) = ζwt to the multiplier data is (ζwt , nt,1) , (ζ

−w
t , nt,1) . Together with

the analogous facts for the other generators and with ζt + ζ−1
t = 2 cos( 2πt ) the

action of the absolute Galois group Gal(Q) on the multiplier data gives an orbit
of length [k : Q] .

6. In general, this orbit length is however not the orbit length of the action of
Gal(Q) on the family F of the Shimura congruence curves Spj , j = 1, . . . , g : if
we consider again the canonical homomorphism h : ∆ → G = ∆/∆(p) = AutS ,
we get in fact at least [k : Q] different epimorphisms σ ◦ h , but their kernels
coincide if and only if they differ by composition with an automorphism of G .
(Here we use again the hypothesis that ∆ is maximal, so we cannot pass to other
homomorphisms by permutation of the generators.) Since we need only a lower
bound for the length of the Galois orbit (remember step 3 above), it is sufficient
to study these automorphisms on its commutator subgroup [G,G] = PSL(2,Fq)
or its extension PGL(2,Fq) – the generators of the possible C2 factors are anyway
irrelevant for the Galois action, see step 4. The automorphisms of these matrix
groups over Fq are composed by

• matrix conjugations leaving eigenvalues and traces invariant – so they
leave invariant the multipliers – and

• Galois conjugations by Gal(Fq/Fp) acting on the matrix coefficients and
hence also on the eigenvalues.

If σ ∈ Gal(Q) induces this second kind of automorphism of G , it sends therefore
a generator gi ∈ G, i = 0, 1,∞ , to another element conjugate to some power g±w

i

where w is some p–power (here and in the following neglecting possible C2 factors,
see above).

7. This is true in the same way for the gi as matrices over Fq and for the gi as
automorphisms of S . In the fist version, σ induces an action on their eigenvalues
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in the finite fields Fpm , in the second version an analogous action

ζi + ζ−1
i 7→ ζwi + ζ−w

i , w a p–power,

where ζi denotes the multiplier of gi . Clearly, if σ fixes k elementwise, it has this
behaviour (with w = ±1 ). Recall from number theory in cyclotomic fields that the
Frobenius subgroup of Gal(Q(ζi)/Q) consisting of all

σ : ζi 7→ ζwi , w a p–power,

is precisely the maximal subgroup fixing the prime ideals in the prime decomposition
of the (unramified!) rational prime p . Its fixed field is the splitting field of p in
Q(ζi) . Using this fact for all three cyclotomic fields Q(ζi) , the restriction to k is
an exercise in Galois theory and shows

{σ ∈ Gal(Q) | S ∼= Sσ} ≤ Up := {σ ∈ Gal(Q) | σ(p) = p}
(Up depending only on k and p , not on the choice of p among the pj because k

is abelian). The orbit of Gal(Q) on the family F has therefore at least length
|Gal(Q) : Up| , and since the splitting field Kp ≤ k of p is the fixed field of Up , this
group index is the field degree [Kp : Q] = g . Together with the upper bound for
the Galois orbit given in Lemma 8 we see therefore that Kp is in fact the field of
moduli – hence also the minimal field of definition – of S .

8. As a side result, we see also that the multiplier data determine uniquely the
curves of the family F . Therefore, Proposition 3 of [3] shows that the actions of
Gal(Q) on F , their multiplier data, and their corresponding prime ideals pj are
compatible. �

Remark 3. Step 5 of the proof above fails for ∆ = ∆(3, 4, 6) because the

centre field k = Q(
√
6) ̸= Q(cos 2π

r , cos
2π
s , cos

2π
t ) = Q . Moreover, the minimal

cyclotomic field containing k is generated by the 24–th root of unity ζ24, hence has
degree 4 over k . Therefore, no group commensurable with ∆ can contain a torsion
element γ of order m ̸= 2, 3, 4, 6 because otherwise we would have a cyclotomic
subfield k(γ) ∼= k(ζm) < A , and this can have at most degree 2 over k because A
cannot contain larger commutative subfields.

Is it possible that in this case all Sp are defined over Q ? No: by the quadratic
reciprocity law, rational primes p split in k if and only if p ≡ ±1 or ±5 mod 24 .
The first example p = 5 , p = (1 ±

√
6)Ok gives two Galois conjugate curves of

genus 16 with field of moduli k , see the (quite different) proof in [1].
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