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Fields of definition of uniform dessins on quasiplatonic
surfaces
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Abstract. In previous work the authors introduced certain Shimura curves
that possess different uniform dessins d’enfants (equivalently, uniform Belyi
functions). They are all quasiplatonic and therefore they can be defined over
its field of moduli. In this paper the authors determine fields of moduli and

some fields of definition of these curves and their related uniform dessins.

1. Introduction

Dessins can be considered as hypermaps on compact oriented two–manifolds,
that is bipartite graphs cutting the underlying surface in finitely many simply con-
nected cells. In the special case that all white (or all black) vertices have valency 2 ,
we may omit these vertices and therefore we are in the classical group theoretic and
geometric–topological theory of maps which can be traced back to the classification
of platonic solids.

More recently, these objects attracted wider interest by two observations of
Grothendieck [10] who invented the term dessins d’enfants for them.

(1) Dessins arise in a very natural way on all smooth complex projective
algebraic curves defined over number fields: by a result of Belyi [1], there
exist non–constant meromorphic functions

β : C → P1(C)

on a curve C (equivalently, a compact Riemann surface) ramified at most
over 0, 1,∞ precisely if C can be defined over a number field. Such
functions are called Belyi functions and, consequently, algebraic curves
defined over Q are also called Belyi curves. In this case, the β–preimage
of the real interval [0, 1] defines a bipartite graph on C which is a dessin.
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(2) Conversely, if we start with an arbitrary topological hypermap on an ori-
ented compact two–manifold, there is a unique conformal structure on
the manifold, corresponding to an algebraic curve defined over a number
field, together with a Belyi function corresponding to this dessin. A first
construction of this conformal structure – at least in the map case – was
given by Singerman [15] even before the term dessin was coined.

(3) A third important aspect gives a link to the uniformisation of Riemann
surfaces, see for example [20]: Belyi functions on a curve C correspond to
Fuchsian group inclusions Γ < ∆(r, s, t), where Γ is a finite index subgroup
of a Fuchsian triangle group ∆ = ∆(r, s, t) such that C can be written as
the quotient Γ\H, where H denotes the upper half plane. With a suitable
identification of the target quotient space with the Riemann sphere (the
fixed points of ∆ have to be identified with 0, 1,∞ ), the Belyi function
is then the canonical quotient mapping

β : Γ\H → ∆\H
Γz 7→ ∆z .

Dessins should therefore encode all relevant properties of the underlying Rie-
mann surfaces, in particular their defining equations as algebraic curves and the
explicit form of the Belyi function of the dessin. Finding these data from the com-
binatorial structure of the dessin is however a very hard problem, so one is already
satisfied to determine the field of moduli and the minimal field of definition for C
and the Belyi pair (C, β), if such minimal field exists; for precise definitions see
the next section. The present article focuses on these objects in the case of cer-
tain Shimura curves containing different uniform dessins. Why are these dessins so
interesting?

Although dessins define their underlying curves uniquely, on a Belyi curve one
can always construct an infinity of Belyi functions, hence an infinity of dessins.
How are these different dessins linked to each other? Can one get uniqueness of
dessins by imposing additional conditions?

One can in fact show [9] that regular dessins – those for which the group of
colour– and orientation–preserving automorphisms acts transitively on the edges –
on surfaces of genus g > 1 are almost uniquely determined: their surfaces C are
called quasiplatonic, and they can be characterized by the fact that their surface
groups Γ are normal subgroups of triangle groups ∆ . It is nontrivial but not too
surprising that the existence of several non–isomorphic regular dessins on the same
curve C is always induced by the finitely many and well–known inclusion relations
between different triangle groups.

Regular dessins are in particular uniform, that is (due to the symmetry under
the automorphism group) all white vertices have the same valency, and also all
black vertices and all faces. Uniform dessins can be characterized by the fact
that the surface groups Γ of their surfaces C are contained in triangle groups ∆,
but they are no longer necessarily normal subgroups; the signature (r, s, t) of ∆
is determined by the valencies of the dessin. In the terminology of point (3) of
the above enumeration, the uniform dessins correspond to inclusions Γ < ∆ with
torsion–free subgroup Γ . In this case, inclusions between triangle groups always
induce new uniform dessins, so one may ask the more interesting question of when
and how many different uniform dessins of the same signature may exist on one
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curve. The answer is given in [8]: an unexpected large number of different uniform
dessins of the same signature exists if and only if Γ is contained in a congruence
subgroup of an arithmetic triangle group ∆ , for details see Section 3.

The present paper is in some sense a continuation of [8]. We determine fields
of moduli and some fields of definition of the curves involved and of these exotic
uniform dessins – at least in the case of Shimura curves whose surface groups are
principal congruence subgroups Γ = ∆(pn) of prime power level in an arithmetic
triangle group ∆ .

2. Fields of moduli and fields of definition

Let S be a smooth algebraic curve and k ⊆ C a field. We say that k is a field
of definition of S if there exist homogeneous polynomials

Fj ∈ k[x0, x1, . . . , xn] , j = 1, . . . , J

such that for F := {F1, . . . , FJ} , S and

SF = {[x0, x1, . . . , xn] ∈ Pn(C) : Fj(x0, . . . , xn) = 0 , for j = 1, . . . , J }
are isomorphic. Throughout the paper we will deal with Belyi curves, and hence
we may always assume that k < Q .

Consider now a compact Riemann surface S, an algebraic model SF
∼= S with

F = {F1, . . . , FJ ∈ Q[x0, . . . , xn]} and a Galois element σ ∈ Gal (Q) := Gal (Q/Q).
One can construct the Galois conjugate curve Sσ

F = SFσ , where Fσ is obtained
from F by applying σ to all coefficients of all Fj , and the inertia group

IS = {σ ∈ Gal(Q) : Sσ
F
∼= SF }

which clearly does not depend on the choice of model. The fixed field

QIS
= Fix(IS) = {α ∈ Q : σ(α) = α, for all σ ∈ IS}

is called the field of moduli of S, and we will denote it by M(S). It is a well–known
fact that the field of moduli is always contained in any field of definition, but in
general M(S) is not a field of definition of S, see for example [6] or [14]. However,
a quasiplatonic curve can always be defined over its field of moduli ([20]).

Similarly, if G < AutS is a group of automorphisms of S, we will say that k
is a field of definition of (S,G) if there exists a model SF defined over k and an
isomorphism φ : SF −→ S such that the group of automorphisms φ−1Gφ < AutSF

is also defined over k . The inertia group is now defined as

I(S,G) =
{
σ ∈ Gal (Q) :

there exists an isomorphism fσ : S −→ Sσ

such that ασ ◦ fσ = fσ ◦ α, ∀α ∈ G

}
,

in other words, for every σ ∈ I(S,G) there is an isomorphism fσ : S −→ Sσ such
that the diagram

S

α

��

fσ // Sσ

ασ

��
S

fσ // Sσ

is commutative for every α ∈ G. Accordingly, the field of moduli of the pair (S,G)

is M(S,G) = QI(S,G)
.
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Consider now a Belyi function β : S −→ P1(C) defining a dessin d’enfant D
on S. The group of automorphisms of β is defined as the subgroup of AutS given
by Aut(S, β) = { f ∈ AutS : β = β ◦ f }. We will write AutD := Aut(S, β). For
every model SF as above β ◦ φ is a rational function on SF . We will say that k is
a field of definition of (S, β) if there exists a model SF of S such that both F and
the covering β ◦φ are defined over k. Accordingly, we will define the field of moduli
M(S, β) as the field fixed by

I(S,β) =
{
σ ∈ Gal (Q) :

there exists an isomorphism fσ : S −→ Sσ

such that βσ ◦ fσ = β

}
.

We will also call M(D) := M(S, β) the field of moduli of the dessin D and, corre-
spondingly, a field of definition of D will be a field of definition for the Belyi pair
(S, β) . Clearly, I(S,β) < IS and therefore M(S) < M(S, β) .

In many important cases these fields of moduli coincide. For instance, the fields
of moduli of regular Belyi functions often agree with the field of definition of the
surface in which they are defined. Recall that a Belyi function β is called regular if
it defines a normal covering S → S/G ∼= P1(C) for some group of automorphisms
G < AutS. In this case the corresponding dessins are also called regular and the
surface S is called quasiplatonic.

Lemma 1. If S is quasiplatonic with surface group Γ�∆ where ∆ is a maximal
triangle group, then we have M(S) = M(S, β) for the Belyi function

β : Γ\H → ∆\H .

Proof. We may suppose that S is defined over M(S) , so βσ is another regular
Belyi function of the same degree on S for all σ ∈ IS . But, since ∆ is maximal,
one has Aut(S, β) = AutS = Aut(S, βσ) and, being β and βσ regular, one has
β = βσ. �

Remark 1. It is useful to notice what may happen if the triangle group con-
sidered is not maximal. Take for example the possibility r = s ̸= t ; then there may
exist a σ ∈ IS fixing S but exchanging the zero set of its Belyi function B and the
zero set of 1 − B such that M(S,B) can be a quadratic extension of M(S) . The
same problem may occur for uniform non–regular Belyi functions, of course.

A refined argument shows how to extend Lemma 1 in some cases to non–
maximal triangle groups:

Lemma 2. Let S be a quasiplatonic surface with surface group Γ ▹ Φ where
Φ is a non–maximal triangle group of signature (r, r, t) , r ̸= t , with regular Belyi
function B . Suppose moreover that Γ is also normal in the maximal triangle group
∆ of signature (2, r, 2t) , containing Φ with index |∆ : Φ| = 2 . Then there is a
model for (S,B) defined over M(S) .

Proof. We can assume S to be defined over M(S) , and that all zeros of B
and of 1 − B have order r . Any σ ∈ Gal(Q/M(S)) fixes S and either fixes B or
maps it to Bσ = 1−B , see Remark 1. Both B and 1−B take the value 1

2 at the
same points x ∈ S , images of the Φ–orbit (and also ∆–orbit) of the fixed point of
the canonical order 2 generator of ∆ under the projection H → Γ\H . We take such
a point x ∈ B−1( 12 ) ; for any σ ∈ Gal(Q/M(S)) , also σ(x) ∈ B−1( 12 ) . Since it is
not a ramification point of B nor 1−B , there is a unique gσ in the covering group
Φ/Γ of B (and of 1−B ) with the property gσ(x) = σ(x) . Now we distinguish two
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cases:
First, if Bσ = B , we put fσ := gσ ∈ AutS .
Second, if Bσ = 1 − B , there is an involution iσ ∈ AutS induced by an order 2
generator of ∆ fixing x , interchanging the zero sets of B and 1−B and fixing their
pole sets. In this case, we put fσ := gσ ◦ iσ .
In both cases, the fσ ∈ AutS are uniquely determined by σ and make the following
diagrams commutative:

S

B
��4

44
44
44

fσ // S

Bσ

��











P1

By uniqueness, these fσ trivially satisfy Weil’s cocycle condition [19], whence (S,B)
can also be defined over M(S) . �

We learned from Rubén Hidalgo another application of Weil’s criterion which
turns out to be very useful for proving the following theorem – for more sophisti-
cated versions see [4].

Theorem 1. Let S be a quasiplatonic curve of genus g > 1 with full automor-
phism group AutS = G. If G contains its centre Z(G) as a direct factor, that is if
G ∼= G′ × Z(G) , the pair (S,G) can be defined over its field of moduli M(S,G) .

Proof. We can suppose that S is defined over its field of moduli M(S) . Let
σ ∈ I(S,G) . Every automorphism fσ satisfying the condition

fσ ◦ α ◦ f−1
σ = ασ for all α ∈ G

must be of the form (gσ, h) ∈ G′ × Z(G) for some gσ ∈ G′. Then the set {(gσ, 1)}
satisfies Weil’s cocycle condition and we can define (S,G) over M(S,G) . �

A remark in the preprint [2] suggests that the result may still be true without
the hypothesis about the centre. We will not use such a stronger version since the
automorphism groups considered here are of type PSL2 , PGL2 or direct products
of such groups with cyclic factors C2 , so Theorem 1 applies.

Corollary 1. Under the same hypotheses, let U be a subgroup of G and
C := U\S the quotient curve. Then, C can be defined over the field M(S,G) .
Moreover, all such quotient curves C can be simultaneously defined over M(S,G)
in the sense that all their function fields M(S,G)(C) are subfields of M(S,G)(S) .

Proof. Recall that k is a field of definition for C if the function field C(C) can
be obtained by a constant field extension of a function field k(C), that is tensoring
some ring of functions k[C] with C and taking the quotient field. Now, we know
that the function field of S is a constant field extension of M(S,G)(S) and that
moreover all automorphisms of S are defined over M(S,G). Therefore, M(S,G)(S)
is a Galois extension of a rational function field M(S,G)(β), and M(S,G)(C) is
the fixed field of the subgroup U . This construction works simultaneously for all
quotient curves of S . �
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3. Congruence subgroups and uniform dessins

A finite group G is called a Hurwitz group if it acts as automorphism group on
a compact Riemann surface S of genus g > 1 and has order 84(g − 1) , which is
Hurwitz’s universal upper bound for all such automorphism group orders. In this
case the surface is moreover quasiplatonic: it is well known that S is uniformised in
this case by a normal subgroup K of the triangle group ∆(2, 3, 7) and, in particular,
one has G ∼= ∆(2, 3, 7)/K. A classical theorem by Macbeath [12] shows that
PSL(2,Fq) is a Hurwitz group exactly in the following cases

(i) q = 7,
(ii) q = p prime for p ≡ ±1 mod 7,
(iii) q = p3 for p prime and p ≡ ±2 or ± 3 mod 7.

The corresponding Riemann surfaces are usually known asMacbeath–Hurwitz curves
and the first examples are found in genus three (Klein’s Riemann surface, with au-
tomorphism group isomorphic to PSL(2,F7)), genus seven (the Fricke–Macbeath
curve with automorphism group PSL(2,F8)) and genus fourteen (where there exist
three non–isomorphic but Galois conjugate Macbeath–Hurwitz curves with auto-
morphism group isomorphic to PSL(2,F13)).

It was proved in [5] by A. Džambić that all Macbeath–Hurwitz curves can be
constructed arithmetically as follows. Given a number field k, denote by Ok its ring
of integers. The triangle group ∆(2, 3, 7) is the norm 1 group of a maximal order
in a quaternion algebra A over the field k = Q(cosπ/7) (more precisely its image
under the canonical homomorphism SL(2,R) → PSL(2,R) ), and it can be seen as
a subgroup of PSL(2,OL), the projective group of determinant 1 matrices over the
ring of integers OL of an at most quadratic extension L of k. Any rational prime
p defines an ideal pOk in Ok such that

(i) if p = 7 then p is ramified and pOk = p3 for a prime ideal p ⊂ Ok of norm
q = N(p) = 7;

(ii) if p ≡ ±1 mod 7 then p splits, i.e. pOk = p1p2p3 for prime ideals
p1, p2, p3 ⊂ Ok of norm q = N(pi) = p;

(iii) if p ≡ ±2 or ± 3 mod 7 then p is inert, i.e. pOk is a prime ideal in Ok of
norm q = N(p) = p3.

For every prime p in Ok we can define the subgroup of matrices of ∆(2, 3, 7) con-
gruent to the identity modulo p. This is a normal torsion-free subgroup of ∆(2, 3, 7)
with quotient group isomorphic to PSL(2,Fq) where q = N(p), yielding therefore a
Macbeath–Hurwitz curve.

3.1. Principal congruence subgroups. One can generalise the construction
above in the following way. Consider any arithmetic triangle group ∆ = ∆(r, s, t)
which is the norm 1 group M1 of a maximal order M of a quaternion algebra A
over a field k. In the last section, we will extend our assumptions to triangle groups
containing (always with index 2 or 4 ) such a norm 1 group. Up to an extension
of the quotient groups PSL(2,Fq) to PGL(2,Fq) and/or adding one or two direct
factors C2 , most results of the present section remain valid. It is well known [17]
that in the case of arithmetic triangle groups, the invariant trace field k has always
class number 1, and therefore any prime ideal in Ok is principal, hence of the form
p = πOk for some prime π ∈ Ok . Given such a prime p in Ok one can define the
local quaternion algebra Ap over the p–adic field kp.
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For each prime p not dividing the discriminant of A, the p–adic completion
Ap is isomorphic to M2(kp). As in the previous case one can define the principal
congruence subgroup of level p. It is defined as the (normal) subgroup ∆(p) of ∆
whose localisation with respect to a prime q ∈ Ok coincides with

Φ(p) =

{(
a b
c d

)
∈ Mq

∼= M2(Oq) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod q

}
(here the congruences have to be read coefficient–wise mod πOq ) if q = p and with
M1

q otherwise, where Mp stands for the localisation of M and Oq denotes the ring
of integers of the local field kq. The existence and uniqueness of such a subgroup
is granted by the strong approximation theorem for arithmetic groups (see for
example [18] or [11]). We have ∆/∆(p) ∼= PSL(2,Fq) where q = N(p) := |Ok/p| .

The first consequence is that all these surfaces S = ∆(p)\H have a regular
Belyi function β : ∆(p)\H −→ ∆\H , given by the normal inclusion ∆(p)�∆, and
an automorphism group of order |AutS| = |N(∆(p))/∆(p)| ≥ |PSL(2,Fq)| where
N denotes the normaliser in PSL(2,R) .

Analogously, for each positive integer n we can consider the principal congru-
ence subgroup ∆(pn) of level pn, whose localisation in p corresponds to

Φ(pn) =

{(
a b
c d

)
∈ Mp

∼= M2(Op) :

(
a b
c d

)
≡

(
1 0
0 1

)
mod pn

}
This time the quotient ∆/∆(pn) is isomorphic to PSL(2,Op/p

nOp). Once again
the normal inclusion ∆(pn)�∆ yields a regular Belyi function on S = H/∆(pn).

From the point of view of quaternion algebras, principal congruence subgroups
of level pn with n ≥ 1 correspond to the intersection of certain maximal orders in
the local quaternion algebra Ap. More precisely, maximal orders in a split local
quaternion algebra Ap can be represented as vertices of a regular Bruhat–Tits–tree
of valency q+1, where q = N(p) (see Figure 1). The principal congruence subgroup
of level pn corresponds then to the intersection of all the vertices at distance ≤ n
from some point, which represents the maximal order M whose norm 1 group is ∆.

3.2. Multiple uniform dessins. In [8] we studied under which conditions a
surface S contains different uniform Belyi functions of a given type (r, s, t). This
is equivalent to determine when the uniformising group K of S is contained in
different triangle groups of that signature. In the case when ∆ = ∆(r, s, t) is the
norm 1 group of a maximal order in a quaternion algebra as above, this happens if
and only if K is contained in a group conjugate in ∆ to the congruence subgroup
∆0(p), where p is a prime in Ok not dividing the discriminant of A, and ∆0(p) is
defined as the subgroup of ∆ whose localisation with respect to the prime p is

Φ0(p) =

{(
a b
c d

)
∈ M1

p
∼= SL(2,Op) : c ≡ 0 mod p

}
.

Remark 2. Even if ∆ is strictly larger than the norm 1 group of a maximal
order (by index 2 or 4, as already mentioned) we define the congruence subgroups
∆(p) and ∆0(p) always as subgroups only consisting of norm 1 elements. The same
convention will be used for higher power levels pj.

In order to explain this multiple inclusion of K in different conjugate triangle
groups one has to introduce the so called Fricke (or Atkin–Lehner) extension∆Fr(p).
In the local algebra Ap, the group Φ0(p) is the norm 1 group of an Eichler order Ep,
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Figure 1. Part of the tree of maximal orders of a local algebra
Ap corresponding to ∆(p3) (in the case N(p) + 1 = 8).

that is the intersection of two maximal orders Mp and γ−1Mpγ, where γ =
(
π 0
0 1

)
.

The norm 1 groups of these two (local) maximal orders correspond in the global
case to two triangle groups ∆ = ∆1 and ∆2 of the same type. The (Fricke) element(

0 π−1

−1 0

)
∈ Ap conjugates one maximal order into the other, and therefore induces

an isomorphism of Φ0(p) of order two, called the Fricke involution. In the global
case, this Fricke element corresponds to a matrix in GL(2,R) interchanging ∆1

and ∆2 by conjugation. By the rigidity of triangle groups, this conjugation can be
realised inside PSL(2,R) by an element αp, which generates an index two extension
∆Fr(p) = ⟨∆0(p), αp⟩ called the Fricke extension.

Since αp normalises ∆0(p), but not ∆, and α2
p ∈ ∆0(p), conjugation by αp

induces an involution on the curve ∆0(p)\H . We call it therefore the Fricke in-
volution for ∆0(p) (even if it might not satisfy α2

p = 1 in PSL(2,R) ). As a

consequence every group K < ∆0(p) is included in both ∆ and ∆2 = αp∆α−1
p ,

yielding two different uniform dessins in K\H .
In the same way, for every integer j > 1 one can introduce the congruence

group ∆0(p
j) which corresponds in the local algebra Ap to

Φ0(p
j) =

{(
a b
c d

)
∈ SL(2,Op) : c ≡ 0 mod pj

}
.

Note that ∆0(p
j) < ∆0(p). The Fricke involution is in this case an element αpj

corresponding in the local case to the element(
0 π−j

−1 0

)
,

and ∆0(p
j) is normal in the Fricke extension ∆Fr(p

j) = ⟨∆0(p
j), αpj ⟩. However,

none of the groups ∆0(p
l) is normal in ∆Fr(p

j), for j < l, and neither is any of its
∆–conjugates ∆i

0(p
l). Existence and uniqueness of all these Fricke involutions is
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well known in the case of the elliptic modular group ∆(2, 3,∞) = PSL(2,Z) and
is probably known to the experts in the cases we need here. However, by lack of a
good reference we include a statement and a proof:

Lemma 3. Let ∆ be an arithmetic Fuchsian triangle group, a PSL–image of
a norm 1 group of a maximal order M0 in the quaternion algebra A with totally
real centre field k of class number 1 , and p a prime ideal in k not dividing the
discriminant of A . We consider A as embedded in the matrix algebra M2(R) . For
all j ≥ 1 , the congruence subgroup ∆0(p

j) is the norm 1 subgroup of the intersection
M0 ∩Mj of two maximal orders M0 and Mj in A . These two maximal orders are
conjugate under a (Fricke) involution αpj ; we can suppose that – as an element of
A – αpj has norm π−j. Then the class αpj∆0(p

j) is uniquely determined.

Proof. Since we are considering only congruence subgroups of levels pj , we
can see the maximal orders as intersections of their p–adic completions with A and
visualise the local maximal orders by the vertices of the Bruhat–Tits tree already
introduced above, see Figure 1.

For the first claim about the role of ∆0(p
j) as norm 1 subgroup of the intersec-

tion M0 ∩Mj of two maximal orders M0 and Mj one may consult [8] to see that
these orders correspond to two vertices which are at distance j from each other in
the Bruhat–Tits tree.

Existence of αpj : since k has class number 1 , all maximal orders are conjugate
in A [18], so we have some γ ∈ A∗ such that Mj = γM0γ

−1 . It is easy to see that
we may even suppose γ ∈ SL(2,R) . If M0 = γMjγ

−1 , the element γ2 fixes both
M0,Mj , hence belongs to ∆0(p

j) , and γ normalises this subgroup. If not, we have
γMjγ

−1 = M ′ ̸= M0 , both having distance j from Mj . But in this case there is
some δ in the norm 1 group of Mj (hence fixing Mj) and sending M ′ to M0 , see
the arguments in the proof of the next lemma. Then, δγ exchanges M0 and Mj ,
so we can consider this element as αpj .

Uniqueness: suppose we have two such elements γ, δ ∈ PSL(2,R) exchanging
M0 and Mj under conjugation. They extend to automorphisms of A , so we can
assume by the Skolem–Noether Theorem that they are PSL–images of elements of
A . Then δ−1γ fixes M0 and Mj and – as an element of A – has norm 1 , hence
belongs to ∆0(p

j) and induces the identity on the quotient curve ∆0(p
j)\H . �

Now, the principal congruence subgroups ∆(pn) are obviously included in
∆0(p

j) for each j = 1, . . . , n, hence we deduce that, in particular, the corresponding
surfaces ∆(pn)\H contain several uniform dessins. In fact, one has the following

Lemma 4. Under the same hypothesis as in Lemma 3, for each j = 1, . . . , n
there are qj−1(q + 1) congruence subgroups ∆i

0(p
j) conjugate to ∆0(p

j) in ∆, for
i = 0, . . . , qj−1(q + 1) − 1. Each of them is contained in ∆ and in j different
triangle groups conjugate to ∆, in which ∆(pn) is included non-normally. Every
∆i

0(p
j) is the intersection of ∆ with a conjugate triangle group ∆j,i, and for fixed

j , the different ∆j,i form an orbit under conjugation by ∆ .

Proof. The proof proceeds by induction on j. The group ∆0(p) is an index
q + 1 subgroup of ∆, and for each class of elements ρi ∈ ∆ modulo ∆0(p), i =
0, . . . , q, we can construct the group ∆i

0(p) ≡ ρi · ∆0(p) · ρ−1
i for ρ0 = Id, . . . , ρq,

such that
∆(pn)�∆i

0(p) < ∆
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For each of them we have the Fricke involution αi := ρiαpρ
−1
i , the Fricke exten-

sion ∆i
Fr(p) = ⟨∆i

0(p), αi⟩ ≮ ∆ and therefore a non-normal inclusion of ∆(pn) in

αi∆α−1
i , yielding the following diagram of inclusions

∆

??
??

??
??

??
αi∆α−1

i

}}
}}
}}
}}
}

∆i
Fr(p)

∆i
0(p)

∆(pn)

Now suppose that there are qj−1(q + 1) congruence subgroups conjugate to
∆0(p

j) in ∆. Inside this subgroup lies ∆0(p
j+1) with index q . Its normaliser

in ∆0(p
j) is trivial, and therefore there are q subgroups of ∆0(p

j) conjugate to
∆0(p

j+1). Now the Fricke element αpj+1 conjugates ∆ into a different triangle
group ∆j,1 in which ∆(pn) is included.
The claim about the conjugacy of the different ∆i

0(p
j) for fixed j follows from the ac-

tion of ∆ on the fake projective line P1(Ok/p
j) consisting of pairs (x, y) ∈ (Ok/p

j)2 ,
not both coordinates divisible by p , modulo the diagonal action of (Ok/p

j)∗. The
action of ∆ on this fake projective line is transitive again because the p–adic com-
pletion of ∆ is isomorphic to the PSL(2,Op) of the p–adic integers in kp, and the
subgroups ∆i

0(p
j) are the stabiliser subgroups of the different points on this fake

projective line. They are obviously different and conjugate under the action of
∆ by transitivity. By the same conjugations, ∆ acts on the ∆j,i giving the final
claim. �

The representation in the tree of local maximal orders is the following. The
q + 1 groups ∆i

0(p) correspond to the q + 1 paths joining the middle vertex with
each of its neighbours at distance 1, which correspond to the q+1 groups αi∆α−1

i .
Similarly, for each j = 2, . . . , n the groups ∆i

0(p
j) , i = 1, . . . , qj−1(q+1) are repre-

sented by the paths joining the middle vertex with each of its distance j neighbours,
which correspond precisely to the triangle groups mentioned in the previous lemma.

Example 1. The principal congruence subgroup ∆(p7) < ∆(2, 3, 7), for a prime
p7 in Q(cosπ/7) dividing the rational prime 7, uniformises Klein’s quartic K and,
accordingly, one has one regular Belyi function and N(p7) + 1 = 8 uniform dessins
of type (2, 3, 7) on K.

Example 2. Consider Bring’s curve B, given by the equations x0 + x1 + x2 + x3 + x4 = 0
x2
0 + x2

1 + x2
2 + x2

3 + x2
4 = 0

x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0

in P4(C). It is known that B is the only Riemann surface of genus 4 admitting
the symmetric group on 5 elements S5 as a group of automorphisms (see for ex-
ample [13]), and that this action is simply given by permutation of the projective
coordinates.

Now, the triangle group ∆ := ∆(2, 5, 5) is the norm 1 group of a maximal order

in a quaternion algebra defined over Q(
√
5), and the principal congruence subgroup
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∆(
√
5)�∆(2, 5, 5) uniformises a surface of genus 4. This group is also normal in the

maximal triangle group ∆(2, 4, 5), and it can be proved that ∆(2, 4, 5)/∆(
√
5) =

PGL(2,F5) ∼= S5. As a consequence the surface B has the principal congruence

subgroup ∆(
√
5) as uniformising group.

By the results in the previous sections, it has a regular Belyi function and
N(

√
5) + 1 = 6 subgroups ∆i

0(
√
5). Note that in this case, these subgroups lead

to 12 uniform Belyi functions of type (2, 5, 5) on B, if we take into account the
renormalizations Bi and 1−Bi as in Remark 1 and Lemma 2.

In the following, we will always suppose that ∆ is an arithmetic Fuchsian
triangle group containing a PSL–image of a norm 1 group of a maximal order M0

in the quaternion algebra A with totally real centre field.
We will first focus our attention on principal congruence subgroups of level p.

By the discussion above, there are q + 1 surfaces Si
∼= H/∆i

0(p), i = 0, . . . , q, and
for each of them there are uniform Belyi functions

ri : ∆i
0(p)\H −→ ∆\H

ui : ∆i
0(p)\H −→ αi∆α−1

i \H

such that β and all βi decompose via the intermediate coverings
τi : S ∼= ∆(p)\H −→ Si

∼= ∆i
0(p)\H as

β = ri ◦ τi, βi = ui ◦ τi .

So, for each i = 0, . . . , q one has the following diagram

S

τi

��β

����
��
��
��
��
��
��
��
��
�

βi

��0
00
00
00
00
00
00
00
00
0

Si

ri
||yy
yy
yy
yy
y

ui $$H
HH

HH
HH

H

∆\H = P1 P1 = αi∆α−1
i \H

Lemma 5. Let ai be the automorphism of the intermediate curve Si := ∆i
0(p)\H

induced by the Fricke involution αi . Then, ui◦ai = ri , hence β = ri◦τi = ui◦ai◦τi
and βi = ui ◦ τi = ri ◦ ai ◦ τi .

Proof. Remember that ri and ui are the Belyi functions on Si induced by
the Belyi functions β and βi on S , and that their dessins D and Di come from the
tessellations of H by the fundamental domains F, Fi for ∆ and αi∆α−1

i . Since for
Fi we can take αi(F ), the Belyi functions are linked as indicated. �

Lemma 5 generalises to higher levels as follows.

Lemma 6. Let Sj,i := ∆i
0(p

j)\H , τj,i the quotient map Spn → Sj,i and

rj,i : Sj,i → ∆\H , uj,i : Sj,i → αj,i∆α−1
j,i \H = ∆j,i\H

the two quotient maps giving the regular and the nonregular uniform Belyi functions

β = rj,i ◦ τj,i , βj,i = uj,i ◦ τj,i : Spn → P1(C) .
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Then the involution aj,i induced by αj,i on Sj,i satisfies

uj,i = rj,i ◦ aj,i and rj,i = uj,i ◦ aj,i .

4. Shimura congruence curves of prime power level

In this section we will get some information about the fields of moduli and the
fields of the definition of the curves and dessins described in Section 3.

4.1. Fields of moduli. In order to determine explicitly the field of moduli
M(Sp) of our Shimura curves we could rely on Clark and Voight’s Theorem A and
Proposition 5.1 in [2], at least in the case of prime levels. We will however prove
parts of these results in another way, more similar to the methods already used
here.

First we need the following useful lemma.

Lemma 7. Let ∆ be an arithmetically defined cocompact triangle group, con-
taining the norm 1 group of a maximal order of a quaternion algebra A with centre
field k, and let p be a prime ideal in k not dividing the discriminant of A . Then,
for each positive integer n one has M(Spn) = M(Sp).

Proof. We restrict to the case n = 2, the higher powers behave similarly.
Suppose Sp2 to be defined over M(Sp2). First,

M(Sp2) > M(Sp)

because otherwise we would have a σ ∈ Gal (Q) leaving invariant Sp2 but having
two non–isomorphic quotient congruence curves

Sp and (Sp)
σ

which is impossible.
Second, we get M(Sp2) < M(Sp) by the following argument. For all σ ∈

Gal (Q/M(Sp)) , the Galois conjugate curve (Sp2)σ has as many uniform dessins as
Sp2 , and they are of the same types and have the same automorphism groups as
them (up to isomorphism, of course). By the main results of [8], this can occur
only if this Galois conjugate curve has a surface group Γ contained in a principal
congruence subgroup ∆(q2) with a prime ideal q in k of the same norm q as p.
Moreover, since also the index (∆ : ∆(p2)) is invariant under Galois conjugation,
we have even Γ = ∆(q2) . Now, by the same argument as in the first part of the
proof, their common quotient curve Sp shows

∆(q2) ▹ ∆(p) ◃ ∆(p2)

which is possible only for q = p. Therefore, σ sends Sp2 to an isomorphic curve,
hence M(Sp2) = M(Sp). �

Lemma 8. Let ∆ be an arithmetically defined cocompact triangle group, con-
taining the norm 1 group of a maximal order of a quaternion algebra A with centre
field k (abelian over Q ), and let p be a rational prime coprime to the discrimi-
nant of A , p one of the prime ideals of the ring of integers Ok of k in the prime
decomposition

pOk = (p1 · . . . · pg)e ,
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g the splitting number and e the ramification index of p in the field extension k/Q .
For every positive integer n let S = Spn be the quasiplatonic surface with surface
group ∆(pn) . Then [M(S) : Q] ≤ g .

Proof. By Lemma 7 we can restrict ourselves to the case n = 1 . For the
action of an arbitrary σ ∈ Gal(Q) on S we know that Sσ is still quasiplatonic,
that regularity, uniformity, and the type of all dessins are preserved. Therefore, if
we denote by Γ = ∆(p) the surface group of S and by Γσ the surface group of Sσ ,
then Γσ is again normal in ∆ and Sσ has one regular dessin and N(p)+1 uniform
ones of type (r, s, t) if ∆ = ∆(r, s, t) . By [8] we know that this is only possible if
the surface group of Sσ is contained in one of the principal congruence subgroups
∆(pj) . Because also degrees of Belyi functions are Galois invariant, we have even
Γσ = ∆(pj) for some j, since

(∆ : ∆(pj)) = (∆ : ∆(p)) = (∆ : Γσ) .

Therefore the well–known group action of Gal(Q) on the set of prime ideals pj , j =
1, . . . , g , induces an action on the principal congruence subgroups ∆(pj) and their
corresponding surfaces Spj whose stabiliser subgroup IS has an index at most g in

Gal(Q) . So Galois theory implies the claim about the field degree. �

Corollary 2. Under the same assumptions, we have [M(S) : Q] ≤ [k : Q] .
Moreover, M(S) = Q in all cases with splitting number g = 1 , that is in particular
for all rational primes p inert or totally ramified in k .

This applies in particular to the examples we have already seen: for Bring’s
curve we have k = Q(

√
5) with p = 5 totally ramified, for Klein’s quartic k =

Q(2 cos 2π
7 ) and p = 7 is totally ramified too. The next Hurwitz curve (with the

same ∆ = ∆(2, 3, 7) , hence with the same k ) is the Fricke–Macbeath curve S2 in
genus 7 with surface group ∆(2) , 2 inert in k , hence with M(S2) = Q as well.

Not only in these cases the estimate of Lemma 8 is sharp. Streit’s method used
in [16] extends to many other arithmetic triangle groups; the technical difficulties
in his approach are however not smaller than those in the preprint [2] by Clark and
Voight.

4.2. Fields of definition. In this section we will study the fields of definition
of some of the curves involved in the construction and we will find simultaneous
fields of definition for the uniform dessins constructed in the previous sections.

We start by stating some facts about the fields of definition of the intermediate
curves Si.

Lemma 9. Let S = Sp be the quasiplatonic surface with surface group ∆(p) ,
with ∆ a maximal arithmetic triangle group containing the norm 1 group of a
maximal order of A and p a prime not dividing the discriminant of A, and let
Si

∼= ∆i
0(p)\H be as above. Then Si can be defined over M(S) .

Proof. Let gij : Si → Sj = Sσ
i be the unique isomorphism between Si and

Sj induced by an element δij in the norm 1 group Φ contained in ∆ . This choice is
unique because there are precisely q + 1 residue classes δ∆i

0(p) ∈ Φ/∆i
0(p) which

give by conjugation the q + 1 different ∆j
0(p) . Composition of such isomorphisms

gives again an isomorphism induced by an element of Φ , and Galois conjugation
by τ ∈ Gal(Q/M(S)) preserves also this collection of isomorphisms induced by the
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norm 1 group Φ because Φ/∆(p) is the commutator subgroup of the full automor-
phism group G := ∆/∆(p) of S . Therefore, the collection of these gij satisfies
Weil’s cocycle condition whence all Si can be defined over M(S) . �

Theorem 2. Under the same hypotheses as in Lemma 9, M(S, βi) = M(S)
for all i , in other words: the moduli field of S is also a moduli field of all uniform
non–regular dessins on it.

Proof. We may suppose S to be defined over M(S) . For all i and all σ ∈
Gal(Q/M(S)) , βσ

i is another uniform Belyi function βj of the same type, and for
them the same δij as in Lemma 9 induce automorphisms dij := δij∆(p) ∈ G =
AutS with the property βj ◦ dij = βi . �

Unfortunately, in contrast to the isomorphisms gij in the proof of Lemma 9, the

automorphisms dij are uniquely determined only modulo the subgroup ∆j
0(p)/∆(p)

of G, so Weil’s criterion does not apply immediately. The question of whether
the uniform dessins can be defined over their field of moduli M(S) does not have
therefore an obvious answer. However, some partial answers can be given.

Theorem 3. Under the same hypotheses as in Lemma 9, let Si be defined
over M(S). Suppose moreover that there exists a M(S)–rational point x ∈ Si , not
critical for the canonical covering τi : S → Si . Then (S, βi) can be defined over
M(S) .

Proof. By Lemma 5 we know that βi = ri ◦ ai ◦ τi . First, let us prove that
both τi and ri can defined over M(S) . Since Si and x are Gal(Q/M(S))–invariant
and τi is a normal covering, one can apply the method of Coombes and Harbater
[3]: take a preimage y of x under τi . For all σ ∈ Gal(Q/M(S)) , we have σ(y) in
the preimage of x under τσi , hence there is a unique isomorphism

dσ : S → Sσ with dσ(y) = σ(y) and τi = τσi ◦ dσ ,

so Weil’s criterion applies to the pair (S, τi) . The function ri is also Gal(Q/M(S))–
invariant: otherwise we would have several different regular Belyi functions β =
ri ◦ τi and βσ = rσi ◦ τi on S .

Now, the Fricke involution ai of Si is not necessarily fixed by all Galois elements
σ ∈ Gal(Q/M(S)). If aσi = ai, then βσ

i = rσi ◦ aσi ◦ τσi = ri ◦ ai ◦ τi = βi .
Let us suppose that aσi ̸= ai. Note that, if ai is induced by conjugation by

αi ∈ N(∆i
0(p)), then aσi = ai ◦ d is induced by conjugation by αiδ for some δ ∈

N(∆i
0(p)) ∩ αi∆α−1

i , since αiδ must interchange the maximal triangle groups ∆

and αi∆α−1
i . But the automorphism group Aut (Si, ui) of the Belyi function ui =

ri ◦ ai is induced by the normaliser of ∆i
0(p) in αi∆α−1

i . As a consequence one has
ui ◦ d = ui and βσ

i = rσi ◦ aσi ◦ τσi = ri ◦ ai ◦ d ◦ τi = βi . �
If we ask for fields over which all relevant functions are defined simultaneously,

the results become slightly weaker, of course.

Theorem 4. Under the same hypotheses as in Lemma 9, the regular and all
uniform Belyi functions on the Shimura curve S = Sp can be defined simultaneously
over the field of moduli M(S,G) .

Proof. By Corollary 1, the function fields of S, P1 and all Si can be defined
over M(S,G) , and all quotient maps τi and ri in Lemma 5 correspond to the
respective embeddings of these function fields into each other. As a consequence
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all these maps can be defined over M(S,G) simultaneously. Now, by the same
argument as in the proof of Theorem 3, for all σ ∈ Gal(Q/M(S,G)) one has uσ

i = ui,
hence also βσ

i = βi. �

Example 3. Let B ∼= H/∆(
√
5) be Bring’s curve already introduced in Example

2. Let us recall that its full automorphism group AutB ∼= S5 acts on the point
[x0, . . . , x4] ∈ B by permutation of the projective coordinates. Since both B and its
automorphism group are defined over Q, by Theorem 4 its regular dessin and all
its uniform dessins can be defined over Q (even simultaneously).

Example 4. In the affine model KF := {y7 = x(x− 1)2} of Klein’s quartic K (see
Example 2), the function

β0(x, y) = −
(
x6 − 235x5 + 1430x4 − 1695x3 + 270x2 + 229x+ 1

)3 (
x2 − x+ 1

)3
1728x(x− 1) (x3 + 5x2 − 8x+ 1)

7

is one of the (2, 3, 7) uniform Belyi functions (see Example 4.44 in [7]) and it is
defined over M(K) = Q. However, in this model there are automorphisms not
defined over Q, and therefore we cannot expect all uniform Belyi functions in KF

to be defined over Q simultaneously.
However, there is a model for Klein’s quartic in which all uniform Belyi func-

tions are simultaneously defined over the field Q(
√
−7). This follows from a result

in Clark and Voight’s preprint [2] saying that in this case M(K, G) = Q(
√
−7) . A

relatively easy proof for this claim is the following.
Another model for K defined over the rationals is the projective equation

x3y + y3z + z3x = 0 , and in this model all automorphisms are defined over the
cyclotomic field Q(ζ7) , therefore M(K, G) has to be a subfield of this cyclotomic
field. The absolute Galois group acts as automorphism group on G ∼= PSL(2,F7)
whose automorphism group is isomorphic to PGL(2,F7) , an index 2 extension of
its inner automorphism group ∼= G . For inner automorphisms, that is for those σ
acting on G as

α 7→ ασ = γ−1 αγ for some γ = fσ ∈ G

we have obviously σ ∈ I(K,G) , therefore M(K, G) can be an extension of Q of

degree at most 2 . Because Q(
√
−7) is the only quadratic subfield of Q(ζ7) , the

claim follows.

In a similar way – using Lemma 6 instead of Lemma 5 – we can prove

Theorem 5. For all prime ideal powers coprime to the discriminant of A,
the regular and all uniform Belyi functions on the Shimura curve S = Spn can be
defined simultaneously over the field of moduli M(S,G) .
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