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Abstract A bicoloured graph embedded in a compact oriented surface and divid-
ing it into a union of simply connected components (faces) is known as a dessin
d’enfant. It is well known that such a graph determines a complex structure on
the underlying topological surface, but a given compact Riemann surface may
correspond to different dessins.

In this paper we deal with all unicellular (one-faced) uniform dessins of genus 2
and their underlying Riemann surfaces. A dessin is called uniform if white vertices,
black vertices and faces have constant degree, say p, q and r respectively. A uniform
dessin d’enfant of type (p, q, r) on a given surface S corresponds to the inclusion of
the torsion-free Fuchsian group K uniformizing S inside a triangle group ∆(p, q, r).
Hence the existence of different uniform dessins on S is related to the possible
inclusion of K in different triangle groups.

The main result of the paper states that two unicellular uniform dessins be-
longing to the same genus 2 surface must necessarily be isomorphic or obtained by
renormalisation. The problem is approached through the study of the face-centers
of the dessins. The displacement of such a point by the elements of K must belong
to a prescribed discrete set of (hyperbolic) distances determined by the signa-
ture (p, q, r). Therefore looking for face-centers amounts to finding points correctly
displaced by every element of K.
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1 Introduction

A dessin d’enfant D is a bipartite graph embedded into an oriented compact surface
S and dividing it into topological discs, called the faces of the dessin. By work of
Grothendieck we know that such a graph defines a Riemann surface structure on
S with a morphism to the sphere P1(C) with at most 3 ramification values. Such
morphisms are called Bely̆ı functions. A Riemann surface constructed in this way
is known as Bely̆ı surface and it is isomorphic to an algebraic curve defined over
a number field by Bely̆ı’s theorem [4]. To retrieve a dessin from a Bely̆ı function
β (with normalized ramification values 0, 1 and ∞) one simply takes β−1([0, 1]).
The white vertices can be taken to be β−1(0) and the black vertices to be β−1(1).
As for β−1(∞), it consists of one point inside each face, called the face center.

The combinatorial structure of a dessin D is encoded in the so-called mon-

odromy, a pair of permutations σ0 and σ1 in the symmetric group SN , where N is
the number of edges. A given cycle of σ0 (resp. σ1) describes the edges incident to
a particular white vertex (resp. black vertex). Accordingly, σ∞ = (σ0σ1)

−1 carries
information about the faces of D. The group ⟨σ0, σ1⟩, called the monodromy group

of D, is a transitive subgroup of SN since D is a connected graph.
Conversely, the choice of such a pair of permutations (modulo conjugation

inside SN ) determines a dessin D (with N edges), up to isomorphism.
Dessins d’enfants arise also from the inclusion of a Fuchsian group K into a

triangle group ∆ = ∆(p, q, r). We can associate to such an inclusion a meromorphic
function on the surface D/K, given by the natural projection D/K −→ D/∆ ≃
P1(C), which is a Bely̆ı function.

This last point of view allows us to draw a fundamental domain of a Bely̆ı
surface as union of hyperbolic polygons (forming the faces of the dessin) with
certain side-pairings. These polygons consist of several copies of the fundamental
domain of the corresponding triangle group ∆(p, q, r) in which K is included.

In this paper we shall be concerned with dessins consisting of only one face.
More precisely, we will deal with the question of whether two dessins drawn on the
orientable topological surface of genus 2 and of a naturally defined kind (uniform
dessins, see definition below) give rise to isomorphic Riemann surface structures.

2 Multiple uniform dessins of given type on a given surface

A basic problem in the theory of dessins d’enfants comes from the fact that many
different dessins may produce the same complex structure in the topological surface
where they are embedded. In other words, a given Riemann surface contains many
dessins d’enfants. The question of whether or not the Riemann surfaces underlying
two given dessins are the same is too difficult to address in its full generality, but
restriction to certain classes of dessins can make the question affordable.

The restriction of this problem to regular dessins was fully answered in [9]. In
terms of Fuchsian groups, the Belyi surface S (often called quasiplatonic) underlying
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a regular dessin D is uniformized by a normal subgroup K of a Fuchsian triangle
group ∆, and the Belyi function corresponding to D is the obvious map D/K →
D/∆ ≃ Ĉ.

The class of dessins where it is more natural to extend the results of [9] is
that of uniform dessins. They correspond to a uniformizing (i.e. torsion free) group
K contained (possibly not normally) inside a triangle group ∆ = ∆(p, q, r). All
the white vertices (resp. black vertices, faces) of the corresponding dessin D have
valency p (resp. valency q, valency 2r)), and (p, q, r) is said to be the type of D.

The existence of multiple dessins of the same type in a given surface S ≃ D/K

can be described in two ways in terms of the related Fuchsian groups:

1. There exists some α ∈ PSL2(R) such that K < ∆ and K < α∆α−1.
2. There exists some α ∈ PSL2(R) such that K < ∆ and α−1Kα < ∆.

Both descriptions look equivalent, and they are so apart from two special
situations. When α belongs to N(K), the normalizer of K in PSL2(R), conju-
gation by α corresponds to an element of the automorphism group of the surface
Aut(S) ≃ N(K)/K. Conversely if two isomorphic uniform dessins belong to a given
surface S, then there exists an automorphism of S that moves one to the other. In
this situation only the first description shows the existence of two different dessins
group theoretically.

The second special situation occurs for α ∈ N(∆), hence it fits better with the
second description. In this case, conjugation by α corresponds to some permutation
of the role of white vertices, black vertices and face centers, and the dessin given
by the inclusion α−1Kα < ∆ is a renormalisation of the one corresponding to
K < ∆. This situation can only happen for signatures where two of the integers
p, q, r coincide, since otherwise N(∆) = ∆.

As a consequence, note that two different inclusions K < ∆ and K′ < ∆′

determine isomorphic or renormalised dessins D and D′ if and only if there exists
α ∈ PSL2(R) conjugating the whole inclusion, that is

K′ = αKα−1 and ∆′ = α∆α−1.

Remark 1 Note that two uniform dessins of different types (p1, q1, r1) and (p2, q2, r2)
may lie on the same surface, but then the associated triangle groups ∆(p1, q1, r1)
and ∆(p2, q2, r2) must be commensurable, that is their intersection is a subgroup
of finite index in both of them.

When dealing with these inclusions, we will use some general facts about tri-
angle groups, so we recall them next.

For every hyperbolic signature (p, q, r) there is a unique (modulo conjugation
in PSL2(R)) triangle group ∆ = ∆(p, q, r) of this type. It is generated by elliptic
elements γ0, γ1, and γ∞ of order p, q and r, which are rotations around the vertices
of a hyperbolic triangle T with angles π/p, π/q and π/r respectively. A fundamental
domain for ∆ can be obtained as the union of T with its mirror image across any
chosen side.

The hyperbolic distances between the fixpoints of any two elements in the
conjugacy class of γ∞ inside ∆, form a discrete set d(p, q, r) = {d1 < d2 < · · · } that
does not depend on the choice of the triangle group within its conjugacy class.
We will call d(p, q, r) the set of admissible distances for the type (p, q, r). These
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hyperbolic distances were already used in [2] and [7], and will play a special role
in our study.

Now let D be a uniform dessin given by K < ∆(p, q, r), where |∆(p, q, r) : K| =
N . A fundamental domain for K will consist of N/r = s hyperbolic polygons with
centers at c1, . . . , cs, all of them fixpoints of elements in the conjugacy class of
γ∞ inside ∆; each polygon corresponds to one of the faces of D. Without loss of
generality we can assume c1 to be the origin.

Note also that, since K < ∆, every element of K sends each ci to another point
of order r in the tessellation. In particular every such an element of K moves ci
by one of the admissible distances listed in d(p, q, r).

Suppose we have two different uniform dessins D and D′ of type (p, q, r) in the
same surface S = D/K, given by the inclusions K < ∆ and K < α∆α−1. For each
of these dessins we have a fundamental domain for K as before, with face centers
0 = c1, . . . , cs and α(0) = c′1, c

′
2, . . . , c

′
s respectively. Now c′i (i = 1, . . . , s) are order

r vertices of the tessellation of α∆α−1, but they are not necessarily vertices of the
tessellation of ∆. However, the condition of being moved an admissible distance
by every element of K applies to both ci and c′i, thus we have the following:

Lemma 1 Let D be a dessin given by the inclusion K < ∆(p, q, r), and let D′ be

another dessin of the same type in the same surface. If z ∈ D corresponds to a face

center of D′, then for every g ∈ K

ρ(z, g(z)) ∈ d(p, q, r),

where ρ stands for the hyperbolic distance.

On the other hand, given K < ∆(p, q, r), any point of D moved an admissible
distance by every transformation in K will be called an admissible point, since it
is a candidate for being the face center of a uniform dessin of type (p, q, r) on the
surface D/K.

The following facts about hyperbolic geometry ([3], Ch. 7) will be useful for
our purposes:

Lemma 2 Let g be a hyperbolic isometry of the disc and let us define the translation
length of g as Tg = inf ρ(z, g(z)). Then:

1. The axis of g, i.e. the set of points translated precisely Tg by g, is the geodesic

joining the two fixpoints of g. We will denote it by Ag.

2. The hyperbolic distance between a point z and its image under g depends only on

the distance from z to the axis. More precisely

sinh
ρ(z, g(z))

2
= cosh ρ(z,Ag) sinh

Tg
2
.

3. The set of points Cd(g) of D that is moved a given distance d > Tg by g forms two

arcs of (generalized) circles passing through the fixpoints of g.

By the convexity of the hyperbolic distance and the previous lemma, the dis-
placement of the points in a hyperbolic triangle is bounded from above by the
displacement of its vertices [7], that is:
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Lemma 3 Let T be a hyperbolic triangle with vertices at v1, v2, v3, and let g be a

hyperbolic isometry. Then

ρ(z, g(z)) ≤ max{ρ(v1, g(v1)), ρ(v2, g(v2)), ρ(v3, g(v3))}

for all z ∈ T .

Under certain conditions that will be clear in each case, the inequality in
Lemma 3 is strict for all z ∈ T r {v1, v2, v3}.

3 Unicellular uniform dessins of genus 2

We shall deal from now on with uniform dessins with only one face (unicellular
dessins) on surfaces of genus g = 2. For general results on general uniform dessins
in arbitrary genus, see [8].

The list of triangle signatures of uniform dessins of genus 2 can be found
in [16]. For each of them there is a given index [∆(p, q, r) : K] and a number N of
non-isomorphic dessins of type (p, q, r), or equivalently the number of conjugacy
classes of genus 2 subgroups K < ∆(p, q, r). In Table 1 we show the signatures
corresponding to unicellular dessins. We note in passing that all the triangle groups
involved here are arithmetic [17]. For an account of the role played by arithmeticity
in the problems under consideration see [8].

Signature Index N

(5,5,5) 5 4
(3,6,6) 6 4
(2,8,8) 8 4
(3,3,9) 9 4
(2,5,10) 10 7
(2,4,12) 12 6
(2,3,18) 18 9

Table 1 Unicellular uniform dessins in genus 2.

In terms of the monodromy, since by definition of uniform dessin the cycle
structure of σ0, σ1 and σ∞ = (σ0σ1)

−1 is determined by the signature, finding all
non-isomorphic dessins of type (p, q, r) amounts to finding all the permutations σ0,
σ1 and σ0σ1 with the given structure, modulo conjugation in Sm, the symmetric
group on m = [∆(p, q, r) : K] elements. They can be easily computed with help of
any standard algebraic software such as GAP or Magma.

When a uniform dessin D is unicellular one of the orders of the generators of
the monodromy coincides with the index of K inside the triangle group. Under
these assumptions σ∞ can be chosen to be a single cycle of maximal length, and
so D has only one face. Equivalently, β−1(∞) consists of only one point in the
surface, where β is the Bely̆ı function associated to D.

All the triangle groups appearing in Table 1 belong to different commensurabil-
ity classes except for ∆(5, 5, 5) < ∆(2, 5, 10) and ∆(3, 3, 9) < ∆(2, 3, 18) (see [17]).



6 Ernesto Girondo, David Torres-Teigell

Therefore by Remark 1 two dessins of different such signatures will certainly belong
to non isomorphic Riemann surfaces, except perhaps for the exceptional ones.

The results obtained in the next sections have the following consequence.

Theorem 1 Two unicellular uniform dessins of the same type in genus 2 belong to the

same surface if and only if they are either isomorphic or obtained by renormalisation.

We shall stress here the fact that this statement is known to be false if we
remove the condition on the number of faces. The surface S23 below contains two
uniform dessins of type (2, 3, 9) (not unicellular). The same phenomenon occurs
in higher genus: Klein’s surface of genus 3 contains two uniform dessins of type
(2, 3, 7) (see [8]). On the other hand, to our knowledge it is still unknown whether
or not the statement remains true for unicellular dessins in arbitrary genus.

The proofs of the results we present here are based on the following method.
Let S = D/K be the genus 2 surface underlying a certain unicellular dessin D of
type (p, q, r). We consider the corresponding polygon P of 2r sides and angles 2π/p
and 2π/q that is a fundamental domain for K. Face centers of uniform (p, q, r)-
dessins on S must be detectable as admissible points. In order to find them we look
for points in P that are moved an admissible distance by (at least) all the side-
pairings generating K. Discerning the true face centers among these admissible
points requires further arguments, mainly on the automorphisms of S.

The search of points mentioned above is computer aided, and the results will
be presented through graphics produced with Mathematica [18] and the package
[11]. Most times the results are visualized very clearly in the figures. In the few
cases when there could be any doubt about some point, due to the lack of precision
of the graphic, we will provide a precise argument.

Note that finding two different unicellular dessins amounts to find their face
centers, since there cannot be two dessins centered at the same point. To see
this suppose we have two dessins on S ≃ D/K centered at [0]K , the point of S

corresponding to 0 ∈ D, given by inclusions K < ∆ and K < α∆α−1. In particular
α can be chosen to be a rotation around the origin, since both triangle groups must
have an order-r fixpoint at 0. Furthermore, it can be seen that α must preserve the
set of fixpoints of order r of ∆, and so it preserves the fundamental polygon of K as
well. Note that in all the cases we consider here our fundamental polygon agrees
with the Dirichlet fundamental region around the center of the polygon, hence
the position of the centers of all the polygons of the tessellation, which are the
order-r fixpoints, determines the shape and position of our polygon, and therefore
α∆α−1 = ∆ and the two dessins are the same.

Figure 1 shows the kind of elements that will appear in the pictures. We label
the edges and the vertices zi of the fundamental polygon P counterclockwise. The
i-th edge joins zi−1 and zi, and the edge 1 is the one intersecting R+. We denote
as well pi as the hyperbolic midpoint of the i-th edge. The notation will be slightly
different for the particular case (p, q, r) = (3, 6, 6), see Section 3.5.

In all the figures, F−
(i,j) and F+

(i,j) denote the repelling and attracting fixpoint

of γ(i,j), the transformation that sends the i-th edge of P to the j-th one. The arcs
joining these two points represent admissible arcs for γ(i,j), and a label dk will be
placed on Cdk

(γ(i,j)), where dk is the k-th admissible distance (recall the notation
from Lemma 2).
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F−
1,5

F+
1,5

d1

d1

d2

d3
d4

d2

d3
d4

p1

z1

z10

p5

z4

z5

Fig. 1 Some of the admissible arcs for the side-pairing γ(1,5) in the particular case (p, q, r) =
(5, 5, 5)

The next sections contain the discussion for each possible signature. Every
section begins with a (graphic) enumeration of all the different dessins, shown as
side-pairings on the fundamental polygon. In order to obtain all these side-pairings
we have previously computed all possible monodromies of the dessins involved.

3.1 Dessins of type (5,5,5)

The 4 uniform dessins of type (5, 5, 5) are displayed in Figure 2, where lines indicate
the side-pairings.

D5,5,5
1 D5,5,5

2 D5,5,5
3 D5,5,5

4

Fig. 2 The uniform dessins of type (5, 5, 5)

Black vertices, white vertices and face centers can be interchanged to obtain
the renormalised graphs, which are still of type (5, 5, 5). The dessins D2 and D3

are obviously obtained by renormalisation, since one is obtained from the other
by interchanging the vertices colours. In fact D1 is also a renormalised dessin,
since changing in it the face center with white or black vertices gives D2 or D3

(Figure 3).
On the contrary D5,5,5

4 is self-dual, i.e. isomorphic to its renormalisations.

Theorem 2 There are two uniform Bely̆ı surfaces of type (5, 5, 5).
The following table shows the uniform (5, 5, 5)-dessins contained on them along with

the location of their face centers.
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Fig. 3 D5,5,5
2 and D5,5,5

3 are renormalisations of D5,5,5
1

Surface Aut(S) Dessins Centers

S1 C10 D1 [0]
D2, D3 [z3], [z8]

S2 S3 × C2 D4 [0], [z3], [z8], [p1], [q], [−q], where

q =
√

−2 +
√
5 i

Proof The rotation of order 10 around the origin induces an automorphism σ10

in S1, the surface underlying D1. Note that the order 2 automorphism σ5
10 fixes 6

points, and therefore it corresponds to the hyperelliptic involution J . By the well
known list of possible automorphisms group of genus 2 in [14] we find that Aut(S1)
must be a cyclic group of order 10 and that y2 = x5 − 1 is an algebraic equation
for S1. It follows that there does not exist a second dessin on S1 isomorphic to D1,
since otherwise more automorphisms would exist on the surface.

In [6] the authors give the equation y2 = x6 + 118x3/5 + 1 for the surface S2

underlying D4. The rotation of order 2 around the origin induces now an auto-
morphism σ2 ̸= J that interchanges [z3] and [z8] (black and white vertices in D4).
Since this dessin is self-dual there is also an order 2 automorphism fixing [z3] (resp.
[z8]), that lifts to an order 2 rotation around, say, z3 (resp. z8) and interchanging
the points [0] and [z8] (resp. [0] and [z3]).

These three automorphisms generate a subgroup of Aut(S2) not containing the
hyperelliptic involution J . Since this subgroup can be seen as all the permutations
of [0], [z3] and [z8], it is clearly isomorphic to S3, the symmetric group on three
elements.

Note that σ2 fixes two points, namely [0] and [p1]. Since every automorphism
commutes with the hyperelliptic involution J , we have

σ2 ◦ J([0]) = J ◦ σ2([0]) = J([0]), and σ2 ◦ J([p1]) = J ◦ σ2([p1]) = J([p1]).

It follows that J([p1]) and J([0]) are fixed points of σ2. Since J([0]) ̸= [0] we
must have J([0]) = [p1], therefore there must be a second dessin isomorphic to D4

centered at [p1].
We can proceed in the same way with the automorphism fixing [z3] (resp. [z8])

whose second fixed point is [−q] (resp. [q]), the hyperbolic midpoint of [0, z8] (resp.
the hyperbolic midpoint of [0, z3]). Therefore we find two dessins isomorphic to D4

with the face center at [−q] = J([z3]) and [q] = J([z8]).
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If there were more dessins isomorphic to D4 in S2 the automorphism group
would be larger than S3 × C2. By [14] the only possibilities are either D6 × C2

or S4 × C2, and they correspond to the surfaces S7 and S17 (see Propositions 4
and 6).

Finally, surfaces S1 and S2 are not isomorphic because they have non isomor-
phic automorphism group, therefore they only contain the dessins we have already
found above.

3.2 Dessins of type (2,5,10)

The 7 uniform dessins of type (2, 5, 10) are given by the side-pairings of a decagon
shown in Figure 4. Let us remark that here p = 2, q = 5 and r = 10, and we
can think of the fundamental polygon as a decagon with angle 2π/5 instead of a
20-gon with half the angles equal to π.

D2,5,10
1 D2,5,10

2 D2,5,10
3 D2,5,10

4

D2,5,10
5 D2,5,10

6 D2,5,10
7

Fig. 4 Dessins of type (2, 5, 10)

Note first that any surface containing a (5, 5, 5)-dessin contains as well a (2, 5, 10)-
dessin, which is obtained by refinement of the former one. This is due to the in-
clusion of triangle groups ∆(5, 5, 5) < ∆(2, 5, 10). Note also that Proposition 2
produces an equivalent statement regarding (2, 5, 10)-dessins on S1 and S2.

With this in mind it is obvious that this refinement procedure transforms D5,5,5
1

into D2,5,10
1 , D5,5,5

2 and D5,5,5
3 into D2,5,10

2 , and D5,5,5
4 into D2,5,10

3 . In particular,
since D5,5,5

1 , D5,5,5
2 and D5,5,5

3 were renormalisations of each other, it follows that
D2,5,10

1 and D2,5,10
2 belong to the same surface.

Theorem 3 There are six uniform Bely̆ı surfaces of type (2, 5, 10):



10 Ernesto Girondo, David Torres-Teigell

Surface Aut(S) Dessins Centers

S1 C10 D1 [0]
D2 [z3], [z8]

S2 S3 × C2 D3 [0], [z3], [z8], [p1], [q], [−q], where

q =
√

−2 +
√
5 i

S3 C2 × C2 D4 [0], [p1]

S4 C2 × C2 D5 [0], [p1]

S5 C2 × C2 D6 [0], [p1]

S6 C2 D7 [0], [q], where

q = −
√

−1
2 + 3

√
5

10

Proof Let S3 be the surface underlying D4. The order two rotation around the
origin induces an automorphism σ2 of the surface fixing 0 and p1. This automor-
phism being different from the hyperelliptic involution J we can proceed as in the
proof of Theorem 2 to deduce that J([0]) = [p1]. The same argument applies for
the surfaces S4 and S5 underlying D5 and D6.
We know then that in S3, S4 and S5 there is a second dessin isomorphic to the
original one centered in [p1].

In order to prove that these three surfaces are non isomorphic and that they
do not contain further (2, 5, 10)-dessins we look now for other admissible points.

In the case of S3, the two symmetries given by reflection over the imaginary
and real axes allow us to study just one quarter of the fundamental domain, say
the upper-right one. The map γ(2,4) translates the points p2, z2 and z3 strictly less
than d1 (see Figure 5 where the two components of Cd1

(γ(2,4)) are displayed), so
by Lemma 3 there can be no admissible point in the convex sub-polygon generated
by such points and the origin (the shaded region in the figure). The only points in
the remaining region which are translated an admissible distance by γ(2,4) and by
γ(1,6) simultaneously are the origin, p1 and some point x in the real axis. But the
latter one is translated by γ(3,5) a non-admissible distance d1 < ρ(x, γ(3,5)(x)) < d2.
Therefore, besides [0] only [p1] can be the face center of a (2, 5, 10)-dessin.

x

F−
2,4F+

3,5

d2

d2

d1
d1

F+
1,6

Fig. 5 After discarding the point x, the only admissible points left for D4 are the origin and
p1
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Let S4 and S5 be the surfaces corresponding to D5 and D6 respectively. The
study of both surfaces is essentially the same, since they are related by an obvious
anti-conformal involution of the disc (in particular the corresponding algebraic
curves are complex conjugate).
By the symmetry of D5 we can focus just on the upper half part. As before γ(2,4)
translates the points p2, z2 and z3 strictly less than d1, as also does with p4. We can
discard the hyperbolic sub-polygon with these points plus the origin as vertices.
On the other hand γ(5,8) translates p5 less than d1, and exactly d1 the points z5
and p6. Therefore, we can get rid also of the sub-polygon with vertices at 0, p5, z5
and p6 with the only exception of the points p6, which must be a face center since
[p6] = [p1], and z5 (that will be discarded later).

The remaining regions to be considered are the quadrilaterals R1 and R2 with
vertices at p1, z1, p2, 0 and p4, z4, p5, 0 respectively (see Figure 6). The only points
of R1 which are admissible for γ(1,6) and γ(2,4) simultaneously are the origin, p1,
and the same point x in the study of D4, which is translated less than d1 by γ(3,10).
Note that by getting rid of z1 we discard z5 as well since they correspond to the
same point on the surface.

Looking at the intersections of admissible arcs for γ(1,6) and γ(5,8) in R2, we
get two candidates. One of them is z4 (not relevant since it is identified with z1),
and the other one is some point y in the interior of the polygon (see Figure 6),
which can be discarded by looking at the side-pairing γ(2,4).

x

F−
2,4

F+
5,8

F−
3,10

y

d1

d1

d1 d2

F+
1,6

Fig. 6 Only [p1] is a new face center in S4

Finally, let S6 be the surface underlying D7. We can study just half of the
polygon due to the (orientation reversing) symmetry of the identification pattern.
The side-pairing γ(2,4) allows us to dispose of the same region as before. The region
still not considered is the union of the sub-polygon R1 with vertices p4, z4, z5, p6
and 0, and the quadrilateral R2 with vertices p1, z1, p2, 0 (see Figure 7).

In R1 the admissible arcs for γ(3,7) intersect those of γ(1,6) at three points: the
origin, q and y. The point y is clearly translated a non admissible distance between
d1 and d2 by γ(2,4) (see Figure 7), hence it can be discarded. The point q is the
intersection of Cd1

(γ(1,6)), Cd2
(γ(2,4)), Cd1

(γ(3,7)), Cd1
(γ(5,9)) and Cd2

(γ(8,10)).

In R2 the only points with admissible displacement by γ(1,6) and γ(2,4) are once
again p1 and x. The latter is translated a distance in between d1 and d2 by γ(3,7).



12 Ernesto Girondo, David Torres-Teigell

x

F−
2,4

F−
3,7

y

q
d1

d1
d2

d1
d2

F+
1,6

Fig. 7 In S6 the point [q] is the only face center apart from [0]

In order to get rid of the point p1 it is enough to note that the equivalent point
p6 has been already discarded.

Finally, since the order 2 rotation around the center does not induce the hy-
perelliptic involution, a dessin isomorphic to D7 must be found centered elsewhere,
and [q] is the only possibility.

q 0

γ(0)
γ(q)

d1 d1

3π
5

π
5

Fig. 8 Explicit calculation of q. Here γ stands for γ(7,3)

The exact coordinates of q are determined by its hyperbolic distance to the
origin. This distance can be explicitly found using hyperbolic trigonometry in
the quadrilateral with vertices 0, q, γ(7,3)(q) and γ(7,3)(0) (see Figure 8). The
calculations, lengthy but fairly simple, consist of consecutive applications of the
sine and cosine rules ([3], p.148), and lead us to the exact algebraic value q =

−
√

−1
2 + 3

√
5

10 .

3.3 Dessins of type (2,8,8)

The 4 uniform dessins of type (2, 8, 8) are shown in Figure 9.

These dessins were already considered in [1]. In this case interchanging the role
of the black vertices and face centers produces renormalised dessins again of type
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D2,8,8
1 D2,8,8

2 D2,8,8
3 D2,8,8

4

Fig. 9 Dessins of type (2, 8, 8)

(2, 8, 8). However one can easily check that this process does not relate any two of
these dessins, since they are all self-dual.

Theorem 4 There are four uniform Bely̆ı surfaces of type (2, 8, 8):

Surface Aut(S) Dessins Centers

S7 S4 × C2 D1 [0], [z1], [pj ], with j = 1, . . . 4

S8 C2 × C2 D2 [0], [z1]

S9 C2 × C2 D3 [0], [z1], [q1], [q2], where:

q1 =
√

−4 + 3
√
2 eπi/8 and

q2 =
4
√
2

2 e9πi/8

S10 C2 × C2 D4 [0], [z1], [q1], [q2], where:

q1 =
4
√
2

2

√
2 +

√
2
(
1−

√
2
3 + i

3

)
and

q2 = −
√

−2+2
√
2

2 i

Proof The rotation of order 8 around the origin induces an automorphism σ8 in S7,
the surface associated to D1. It can be seen that σ4

8 corresponds to the hyperelliptic
involution, whose fixed points are [0], [z1] and [pj ], with j = 1, . . . , 4. Note that in
particular, the face center of any dessin isomorphic to D1 is a Weierstrass point.
Now, according to [14] the only possibility for Aut(S7)/J to have an element of
order four is the symmetric group S4, and S7 corresponds to the algebraic curve
y2 = x(x4 − 1). The automorphism group of this curve acts transitively on the
set of Weierstrass points, therefore we have automorphisms sending [0] to [pj ] for
j = 1, . . . , 4. In particular, these points are face centers of dessins isomorphic to
D1.

The fact that any (2, 8, 8)-dessin non isomorphic to D1 cannot belong to S7

will follow from the study of the other dessins.

Let S8 be the surface associated to D2. We already know that the renormalised
dessin centered at [z1] is isomorphic to D2. We will see that there are no more face
centers.

By symmetry we can reduce our study of admissible points to the quarter of
the polygon with, say, vertices z2, z3, z4 and 0. The identification γ(2,4) translates
p2 and p4 strictly less than d1, and the points z2 and z3 exactly the first admissible
distance. In fact in the sub-polygon with these points together with the origin as
vertices all the points are translated strictly less than d1, except for the origin, z2
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and z3 (these last two represent the same point in the surface). The only remaining
region is the triangle with vertices at the origin, p4 and z4 (see Figure 10).

F−
2,4

F+
1,3

d1
d2

d3

d1
d2

x

F−
5,7

Fig. 10 Some admissible arcs mentioned in the study of S8

In this triangle there are two common admissible points for γ(2,4) and γ(5,7)
(the white points in Figure 10). Both of them are not admissible for γ(1,3), but
they lie so close to some of its admissible arcs that this time it does not result
transparent in the figure. For instance, the dashed arc in Figure 10 representing
Cd2

(γ(1,3)), does not pass through the point x at the intersection of Cd1
(γ(2,4))

and Cd1
(γ(5,7)), although it looks so in the picture. This can be seen through an

explicit computation as follows.

x

0

γ(0)

γ(x)

d1

d15π
8

π
8

Fig. 11 The coordinates of x are computed through hyperbolic trigonometry

First we compute x with help of hyperbolic trigonometry (Figure 11). Using
that x and 0 are the only points in [0, z4] translated d1 by γ(4,2), we find that

x =
√

−4 + 3
√
2 e7πi/8. Finally, we check that x is moved by γ(1,3) a non admissible

distance d ≈ 4.253 between d2 ≈ 4.218 and d3 ≈ 4.741. A similar argument discards
the other white point in Figure 10.

In S9, the surface associated to D3 it is enough to study one half of the polygon,
say the one with vertices z1, z2, . . . , z5. Using the same argument as before, γ(2,4)
discards the grey region in Figure 12, except for the points z2 and z3. Now there
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are two regions left to be studied: the triangle R1 with vertices z1, p2 and 0, and
the quadrilateral R2 with vertices p4, z4, z5 and 0.

F−
2,4

F−
1,7

F−
3,6

q1

q2

d1

d2

d2

d3

d1

d2
d3

F−
5,8

F−
3,6

q1

q2

0

z1

w
F−
5,8

Fig. 12 Only q1 and q2 are admissible points. The surface S9 contains dessins isomorphic to
D3 centered at [z1], [q1] and [q2]

There are two common admissible points for γ(2,4) and γ(1,7) in the region R1,
apart from 0 and z1 (already face centers). Numerical computations show again
that one of them, the white point in Figure 12, is not admissible for γ(5,8). Now the

same calculation we did for the point x in S8 gives the value q1 =
√

−4 + 3
√
2 eπi/8

for the second one.

In R2 we focus on the common admissible points for γ(3,6) and γ(5,8). There are
four points apart from 0, z4 and z5. Two of them are easily discarded because they
are moved a non admissible distance between d1 and d2 by γ(2,4) (see Figure 12).
The two points left are q2 lying in the segment [0, z5] and some point x in the
intersection of Cd3

(γ(3,6)) and Cd2
(γ(5,8)) near z4.

Now x is translated a non admissible distance slightly greater than d2, but it is
again not possible to see this in the figure (see the dashed arc). An argument
like the previous ones can be made, though. The exact computation of q2 is very

similar to the one for the point q in S6, and gives q2 =
4
√
2

2 e9πi/8.

The reason why [q1] and [q2] are indeed face centers of dessins isomorphic to
D3 is that the hyperelliptic involution J maps [0] to [q2] and [z1] to [q1]. To see
this, we argue as follows. The axes of γ(3,6) and γ(5,8) intersect at a point w in the
segment [0, q2]. Now [w] ∈ S9 is the intersection of the two simple closed geodesics
determined by the two axes, and according to [10] it must be a Weierstrass point.
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Moreover, J lifts to an order 2 rotation around w, which is the (hyperbolic) mid-
point of [0, q2], and we have J([0]) = [q2] and J([z1]) = [q1].

In S10, the surface underlying D4, it is once again enough to study only one
half of the polygon, say the right half. The side-pairing γ(2,4) allows us to discard
the grey region in Figure 13. We will divide the study of the remaining region in
two parts: the part with positive imaginary part and the one with negative one.

In the first one there are three points which are admissible both for γ(2,4) and
γ(1,6). Two of them are discarded by the side-pairing γ(3,7) (see the dashed arcs
in Figure 13). The only point left in this region is some point q1 lying in the edge
number two of the octagon. We shall determine its value later.

For the second region left to study, we look for common admissible points for
γ(5,8) and γ(1,6). There are three such points, and the only one which is admissible
for γ(3,7) is q2 lying on the imaginary line. The computation of q2, based on the
fact that it is the only point in the imaginary line apart from 0 moved d1 by γ(1,6),
follows the same lines as the computation of q in the study of S6. The result is

q2 = −
√

−2+2
√
2

2 i.

F−
2,4

F−
1,6

F−
3,7

q1

q2

d1
d3

d1

d2

d1

d1

d2

d1

F−
5,8

F−
1,6

F−
3,7

0

w

z1
q1

q2

F−
5,8

Fig. 13 We find four admissible points in S10, namely 0, z1, q1 and q2. There is a dessin
isomorphic to D4 centered at each one of them

Once more the intersection of axes of side-pairings are not the midpoints be-
tween the center and any vertex, so there must be additional admissible points, the
images under the hyperelliptic involution J of [0] and [z1], and they are precisely
[q1] and [q2]. In the right part of Figure 13 we represent a Weierstrass point w in
the intersection of the axes of γ(1,6), γ(3,7) and γ(5,8)). The order 2 rotation around
w is a lift of J mapping 0 to q2 and z1 to a point identified with q1.
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We can compute now q1 easily. Since we know that there is a uniform (2, 8, 8)-
dessin isomorphic to D4 centered at q1, there must be an admissible point lying at
the same (hyperbolic) distance from q1 as the (hyperbolic) distance d from q1 to
the origin. It seems that this can be nothing else than the vertex v1, so we claim
that the length of the segment of the second side joining v1 to q1 equals precisely
d.

With some easy hyperbolic trigonometry, and the help of Maple, our claim
would yield the value

q1 =
4
√
2

2

√
2 +

√
2

(
1−

√
2

3
+

i

3

)
.

Finally, it is quite straightforward to check that q1 is moved d1 by γ(2,4), d2 by
γ(1,6), and d3 by γ(3,7), as expected (see Figure 13). The above value of q1 is
therefore correct.

3.4 Dessins of type (2,4,12)

The 6 uniform dessins of type (2, 4, 12) correspond to the side-pairings of a do-
decagon shown in Figure 14.

D2,4,12
1 D2,4,12

2 D2,4,12
3

D2,4,12
4 D2,4,12

5 D2,4,12
6

Fig. 14 Dessins of type (2, 4, 12)

Theorem 5 There are six uniform Bely̆ı surfaces of type (2, 4, 12):
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Surface Aut(S) Dessins Centers

S11 C2 D1 [0]

S12 C2 × C2 D2 [0], [z2]

S13 C2 × C2 D3 [0], [z2]

S14 C2 × C2 D4 [0], [z3]

S15 C2 D5 [0], [q], where

q =
√
6
6

4
√
3

S16 C2 D6 [0], [q], where

q =
√

−2 + 4
3

√
3 e17πi/12

Proof Let us note first that the hyperelliptic involution on the surface S11 (related
to the dessin D1) lifts to a rotation around the origin of the disc, therefore it
preserves the dessin D1. By the symmetries of the side-pairings we can study only
one quarter of the domain, say the upper-right one. The only points in the shaded
region depicted in Figure 15 that are translated an admissible distance by the
transformation γ(2,12) are the origin and z2. Now, the arc Cd1

(γ(4,10)), which is
the axis of γ(4,10), coincides with the imaginary line. In addition this identification
moves strictly less than d2 the vertices z3 and z4. Using again Lemma 3 and
considering the identification γ(3,9) as well, we can get rid of all the upper-right
quarter of the domain, with the exception of the segments [0, p3] and [0, p4]. There
are two common admissible points for γ(3,9) and γ(4,10) (represented as white dots
in Figure 15), but none of them is translated an admissible distance by γ(2,12).

F−
3,9

F−
4,10

d3

d2

d1

d2
d2

d1

F−
2,12

Fig. 15 S11 does not contain any other dessin apart from D1

For S12, the surface underlying D2, it is enough to study one quarter of the
domain as well. Notice that the hyperelliptic involution J does not fix [0] so there
must be at least another admissible point. The transformation γ(3,5) moves the
points z2 and z5 exactly the first admissible distance d1, and the points p3, z3, p4, z4
and p5 strictly less than d1, so we can exclude the interior of the convex sub-polygon
generated by these vertices and the origin. In fact the only points translated a
distance d1 in this sub-polygon are the origin, z2 and z5 (see Figure 16). By the
symmetries of the side-pairings we have four admissible points z2, z5, z8 and z11
(apart from the origin), all of them corresponding to the same point [z2] on the
surface. Since J does not fix [0] there must be at least another center, and so [z2]
is the center of a dessin isomorphic to D2, image of the original one under J .
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F−
3,5

Fig. 16 The vertices z2 and z5 correspond to the same point on S12, which is the center of a
dessin

The same argument can be applied to S13, the surface underlying D3, since
the four side-pairings used for S12 are side-pairings of this surface too. The only
points not discarded are once again [0] and [z2], that are necessarily related by the
hyperelliptic involution.

Let S14 be the surface corresponding to D4. We can focus on one quarter of
the domain, say the one between z12 and z3. The side-pairings γ(2,11) and γ(3,7)
discard the grey regions in Figure 17, except for z12 and z3 which are moved a
distance d1 by γ(2,11) and γ(3,7) respectively. Only one point of the remaining
region (see Figure 17) is admissible for both identifications. This point is moved
by γ(5,8) a non admissible distance in between d2 and d3. In Figure 17 there is also
an admissible point for both γ(2,11) and γ(3,7) near the edge number 2, but it lies
in fact outside the polygon and, in any case, it is not admissible for γ(5,8).

Therefore the only admissible points in the whole polygon are z12, z3, z6 and
z9, all of them corresponding to the same point on the surface. Since the rotation
of order 2 around the origin does not induce the hyperelliptic involution, this point
must be the face center of a dessin isomorphic to D4.

F−
3,7F−

5,8

d1

d1

d2

d1
d2

d1

d2
d3

F−
2,11

Fig. 17 S14 contains only D4 and its image under J

The surface S15 underlying the dessin D5 has a symmetry of order 2 over the
real line. Focusing on the upper half of the domain, the identifications γ(2,4) and
γ(5,8) allow us to get rid of the grey regions in Figure 18, except for z1, z4 and
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z6, and they all correspond to the same point on the surface. But z4, say, can be
discarded by looking at Cd1

(γ(5,8)) and Cd2
(γ(5,8)).

F−
2,4

F−
5,8

F−
6,9

d1

d1
d2

d2

d1

d4d3

F−
1,7

q

Fig. 18 In S15 there is a dessin isomorphic to D5 centered in [q]

Now we only have to deal with the triangles with vertices at z4, p5, 0, and p1,
z1, 0. In the first one, the only common admissible point for both γ(2,4) and γ(5,8)
is the one depicted in white in Figure 18, that is moved a distance between d2
and d3 by γ(6,9). In the second one there is just one admissible point for γ(2,4) and
γ(1,7), call it q (which is the intersection of Cd1

(γ(1,7)), Cd1
(γ(2,4)) and Cd4

(γ(6,9))).

We can compute its value q =
√
6
6

4
√
3 with the same methods as for q1 in S9, relying

on the fact that q is translated a distance d1 by γ(2,4).

Since the hyperelliptic involution J does not fix [0], the point [q] must be the
face center of a dessin isomorphic to D3.

Finally, let S16 be the surface corresponding to the dessin D6. Because of its
symmetry we will study only the half polygon on the right of the segment [z3, z9].
The side-pairing γ(1,4) moves p1, z1, z2 and z3 less than d1, so we can get rid of
the sub-polygon with these and the origin as vertices. In addition, γ(7,11) (resp.
γ(8,12)) translates p11 (resp. p12) less than the first admissible distance and z10
(resp. z11) exactly d1. Now z10 and z11 are non admissible for γ(8,12) and γ(7,11)
respectively. As a consequence we can discard all the grey regions in Figure 19.

F−
2,9

F−
7,11

F−
8,12

q

d1

d2

d3

d1
d1

d2

d1

d1

d1 d2

F−
1,4

Fig. 19 S16 contains a dessin isomorphic to D6 centered at [q]
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We focus now on the common admissible points of γ(8,12) and γ(2,9) in the
region left to study. These are the point q depicted in black in Figure 19 and the
three white points. These last three can be discarded by looking at the admissible
arcs for γ(7,11). Hence [q], the only admissible point left, must be the face center
of a dessin, image of the original dessin D6 under J . To determine the coordinates
of q we look for the point in the segment [0, z9] which is moved d1 by γ(9,2), and

arguing as for q in S6 it follows that q =
√

−2 + 4
3

√
3 e17πi/12.

3.5 Dessins of type (3,6,6)

In this case the fundamental polygon is not regular, in contrast to previous cases.
The fundamental polygon is now an irregular dodecagon with vertices of angle
2π/3 and 2π/6. The 4 uniform dessins of type (3, 6, 6) are given by the side-pairings
shown in Figure 20.

D3,6,6
1 D3,6,6

2 D3,6,6
3 D3,6,6

4

Fig. 20 Dessins of type (3, 6, 6)

We denote now by zi, for i = 1, . . . , 12, the vertices of the polygon, where
z12 ∈ R+ and they are numbered counterclockwise. The i-th edge will be the one
joining zi−1 and zi .

As in the case of the (2, 8, 8) dessins, we can switch the role of the black vertices
and face centers to get renormalisations of the same type (3, 6, 6). It can be easily
seen that all of them are self-dual.

Theorem 6 There are four uniform Bely̆ı surfaces of type (3, 6, 6):

Surface Aut(S) Dessins Centers

S17 D6 × C2 D1 [0], [z1], [z2], [z3]

S18 C2 × C2 D2 [0], [z2]

S19 S3 × C2 D3 [0], [z1], [z2], [z3]

S20 C2 × C2 D4 [0], [z2], [q1], [q2], where

q1 =
√
6
4 and

q2 = −
√
6
6

Proof Let S17 be the surface associated to D1. The rotation of order 6 around the
origin induces an automorphism σ6 of the surface fixing [0] and [z2], the other ver-
tex of order 6. Note that the order 2 automorphism σ3

6 does not correspond to the
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hyperelliptic involution, so Aut(S17)/J contains an order 6 subgroup isomorphic
to C6. By the table on [14] the only possibility for S17 is to have an automor-
phism group isomorphic to D6 × C2 and to be isomorphic to the algebraic curve
y2 = x6 − 1.

The side-pairing γ(3,12) translates the origin and the consecutive vertices z11,
z12, z1, z2 and z3 exactly d1. In fact these are the only points translated d1 in
the sub-polygon formed by those vertices and the origin (see Figure 21), which
is already one third of the whole fundamental domain. Taking into account the
symmetry of the picture and considering side-pairings we conclude that the only
possible admissible points in the surface are [0], [z1], [z2] and [z3].

F−
3,12

Fig. 21 In the study of D1 the arcs forming Cd1 (γ(2,5)) discard one third of the domain,
except for z1, z2 and z3

By renormalisation we already know that [z2] is the center of a dessin isomor-
phic to D1. To see that the other two admissible points are face centers of a dessin
isomorphic to D1 as well, we can simply draw a suitable fundamental domain
around both of them, and check that the side-pairings are the same as the ones
for D1.

In the surface S18 corresponding to D2 there is an obvious symmetry that
allows us to study just the upper-right quarter of the domain. The side-pairing
γ(1,4) translates z1, and z3 less than d1, while z2 is moved exactly the first distance.
Therefore we can discard the grey region of Figure 22, except for z2 which is a
face center as we already know by renormalisation. Apart from z12, there is only
one point in the region left to study which is admissible for both γ(1,4) and γ(9,12).
This point, that lies on the real line, is translated a non admissible distance in
between d4 and d5 by γ(3,6), so it can be discarded. Therefore in S18 there are only
two dessins, namely D2 and its renormalised dessin.

Let S19 be the surface underlying D3. Using the same argument as for S17 we
can conclude that there are three other dessins isomorphic to D3 centered at [z1],
[z2] and [z3].

As for S20 the surface underlying D4 once again the symmetry of the side-
pairings allows us to study only the upper half of the fundamental polygon. The
same argument on γ(1,4) and γ(9,12) already used for S18 allows us to get rid of
the upper-right quarter of the domain except for the vertices z12 and z2, and the
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d4 d5

d1

d2

F−
3,6

F−
1,4

F+
9,12

Fig. 22 Only D2 and its renormalised dessin live in S18

point q1 ∈ R (see Figure 23). Through an argument similar to the one for q1 in S9

we find q1 =
√
6
4 .

This last point is now translated an admissible distance by the rest of side-
pairings, so it is an admissible point.

q2
q1

d1

d1
d2

F−
3,8

F−
1,4

F−
5,10

F−
6,11

F+
9,12

Fig. 23 The only additional points not discarded in the study of D4 are z2, q1 and q2

For the study of the upper-left quarter we focus on the common admissible
points for both γ(5,10) and γ(6,11). There are three such points apart from the
origin, z4 and z6, although only q2 ∈ R is translated an admissible distance by
γ(3,8), and it is in fact another admissible point. Proceeding as before with an

argument similar to the one used for the point q in S6 we find that q2 = −
√
6
6 .

Now the axes of γ(2,7), γ(3,8), γ(5,10) and γ(6,11) intersect at w, the hyperbolic
midpoint of the segment [0, q2]. Following once again [10] the point [w] of S20 must
be a Weierstrass point and hence J([0]) = [q2] and J([z2]) = [q1].

3.6 Dessins of type (3,3,9) and of type (2,3,18)

Finally, the results for the types (3, 3, 9) and (2, 3, 18) follow from the study of
extremal discs in genus 2 performed in [7].
The 4 uniform dessins of type (3, 3, 9) are displayed in the following figure:
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D3,3,9
1 D3,3,9

2 D3,3,9
3 D3,3,9

4

Fig. 24 Dessins of type (3, 3, 9)

The uniform dessins of type (2, 3, 18) were already studied in [7] in the context
of extremal discs, and the details about them can be found there. We know that
all of them lie in different surfaces, and the same stands for D3,3,9

1 and D3,3,9
2 (that

produce the obvious dessins of type (2, 3, 18) by refinement).
The other (3, 3, 9)-dessins D3,3,9

3 and D3,3,9
4 are related by renormalisation, and

therefore they determine the same surface. Let us remark that, as shown in [8] this
last surface has equation y2 = x6+8x3+4 and contains two non-isomorphic uniform
dessins of type (2, 3, 9).

Theorem 7 There are 3 uniform Bely̆ı surfaces of type (3, 3, 9):

Surface Aut(S) Dessins Centers

S21 C2 D1 [0]

S22 C2 × C2 D2 [0], [p1]

S23 S3 × C2 D3, D4 [0], [z1], [z3], [z5]
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7. Girondo, E. G. González–Diez, G.: Genus two extremal surfaces: extremal discs, isometries
and Weierstrass points, Israel J. Math. 132 (2002), 221-238.

8. Girondo, E., Torres-Teigell, D. Wolfart, J.: Shimura curves with many uniform dessins,
(2009).



Genus 2 Bely̆ı surfaces with a unicellular uniform dessin 25

9. Girondo, E. Wolfart, J.: Conjugators of Fuchsian groups and quasiplatonic surfaces, Q. J.
Math. 56 (2005), no. 4, 525–540.

10. Haas, A. Susskind, P.: The geometry of the hyperelliptic involution in genus two, Proc.
Amer. Math. Soc. 105 (1989), no. 1, 159–165.

11. Haataja, J.: HTessellate, version 1.3.0. Mathematicar package for hy-
perbolic geometry computations, freely downloadable at the webpage
http://www.funet.fi/pub/sci/math/riemann/mathematica/.
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