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Abstract A compact Riemann surface of genus g > 1 has different uniform
dessins d’enfants of the same type if and only if its surface group S is contained
in different conjugate Fuchsian triangle groups ∆ and α∆α−1. Tools and re-
sults in the study of these conjugates depend on whether ∆ is an arithmetic
triangle group or not.

In the case when ∆ is not arithmetic the possible conjugators are rare and
easy to classify. In the arithmetic case, i.e. for Shimura curves, the problem
is much more complicated, but the arithmetic of quaternion algebras controls
the growth of the number of uniform dessins of given type with respect to the
genus. This number grows at most as O(g1/3) and this bound is sharp. As a
tool, localization of the quaternion algebras and the representation of p–adic
maximal orders as vertices of Serre–Bruhat–Tits trees turn out to be crucial.

In low genera, the results shed a surprising new light on the uniformiza-
tion of some classical curves like Klein’s quartic and other Macbeath–Hurwitz
curves.
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A dessin d’enfant can be described as a finite bipartite graph embedded
into a compact orientable 2–manifold and dividing it into simply connected
cells. Grothendieck [7] observed that a dessin determines a Riemann surface
structure, hence an algebraic curve. Rigidity arguments show that the resulting
curve can even be defined over a number field (for a recent proof and more
references see [6]). Conversely, a theorem of Bely̆ı states that every smooth
projective algebraic curve X defined over a number field arises in this way [1].
Unfortunately the correspondence is not unique in this direction. For every
such curve or — in another terminology — for every such Bely̆ı surface one
can construct infinitely many different dessins.

The situation is easier if one restricts to quasiplatonic surfaces and their
regular dessins. These curves can be defined in many different ways [17], e.g. as
quotients Γ\H of the upper half plane H by a torsion free normal subgroup
Γ of a Fuchsian triangle group ∆ . The quotient ∆/Γ acts as a group of
biholomorphic automorphisms on the surface and transitively on the edges
of the dessin, these edges corresponding to the residue classes of ∆ mod Γ .
As shown in [3] and [5], quasiplatonic surfaces can have finitely many regular
dessins only, and these regular dessins are related to each other by conjugations
in triangle groups and inclusion relations between them.

The aim of the present paper is to extend these results to uniform dessins
on Bely̌ı surfaces X = S\H , i.e. with a (torsion free) surface group S con-
tained in some triangle group∆ , but no longer necessarily by normal inclusion.

The main general results are contained in Sections 1, 2 and 3. There is a
remarkable contrast between the study leading to these results in the case of
arithmetic and non-arithmetic Fuchsian triangle groups. In the non-arithmetic
case, a Bely̆ı surface can have at most four uniform dessins of the same type
not equivalent under automorphisms and renormalization. In the arithmetic
case, the number of essentially different dessins on a Bely̆ı surface X of genus
g ≥ 2 depends on the number and the type of congruence subgroups of ∆
containing S. It is bounded from above by O(g1/3) , and there are series of
examples for which this upper bound is attained.

In Sections 4, 5 and 7 we illustrate geometric and arithmetic aspects of
these results in low genera and describe explicit examples of curves with dif-
ferent uniform dessins of the same type. In Section 6 congruence considerations
in quaternion algebras shed a new light on Takeuchi’s commensurability dia-
grams [15] for arithmetic triangle groups.
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1 The main question and the answer in the easy case

To put the problem in a precise form we observe first that a surface group S
contained in a triangle group ∆ is contained in all triangle groups ∆′ contain-
ing ∆ (and maybe also in some triangle subgroups of ∆) inducing dessins of
different types on the surface X . All possibilities of such inclusions are well
known by work of Singerman [11], so we concentrate on dessins of the same
type (p, q, r) coming from triangle groups of this signature, i.e. on the following
question.

Let S be a Fuchsian surface group contained in a triangle group ∆(p, q, r) .
Under which conditions other triangle groups ∆′(p, q, r) of the same signature
contain S and how many of them?

Any two triangle groups of a given signature are conjugate in PSL2R , so
we can reformulate the problem in the following way.

1. Let S be a Fuchsian surface group contained in a triangle group ∆ =
∆(p, q, r) . Which and how many different conjugate groups α−1∆α , α ∈
PSL2R , contain S as well?

Questions concerning Galois actions on families of dessins often lead to
the determination of families of subgroups Γ in a given triangle group ∆
having Galois–conjugate quotient curves X = Γ\H with Bely̌ı function β :

X → ∆\H ∼= Ĉ . To determine the moduli field of this Bely̆ı surface X , i.e.
the fixed field of all Galois automorphisms σ ∈ GalQ/Q with the property
X ∼= Xσ one has to determine those Γ < ∆ conjugate in PSL2R . Therefore
the following version of the main problem is interesting as well.

2. Let ∆ be a Fuchsian triangle group and let Γ be a finite index subgroup.
For which and for how many α ∈ PSL2R do we have αΓα−1 < ∆ ?

Under this condition, conjugation by α ∈ ∆ induces isomorphisms of both
the curve and its dessin, so it is reasonable to count here only residue classes
α ∈ PSL2R/∆ . However, for the first version of the problem it is more natural
to count residue classes α ∈ N(∆)\PSL2R where N denotes the normalizer
in PSL2R .

Definition 1 Let ∆ be a Fuchsian group with finite covolume and Γ < ∆ a
subgroup of finite index. We will denote by d(∆,Γ ) the number of all residue
classes α ∈ N(∆)\PSL2R with the property Γ < α−1∆α (i.e. the number of
all groups conjugate to ∆ and containing Γ ), and by b(∆,m) the maximum
among all d(∆,Γ ) with index (∆ : Γ ) ≤ m .

If Γ is a surface group and ∆ = ∆(p, q, r) a triangle group, then d(∆,Γ ) is
the number of different uniform dessins of type (p, q, r) on Γ\H. The meaning
of b(∆,m) for the genus is given by the Riemann–Hurwitz formula.

Lemma 1 Bely̆ı surfaces X of genus g can have — up to renormalization
— at most b(∆,m) uniform dessins of type (p, q, r) , where ∆ is the triangle
group of signature (p, q, r) and

m =
2g − 2

1− 1
p − 1

q − 1
r

.
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Note that conjugation of ∆ by an element α ∈ N(∆) renormalizes the
dessin on X = Γ\H , i.e. permutes the critical values of the Bely̆ı function. In
any case, α belongs by definition to the commensurator group of Γ (and of ∆ ).
Therefore the answer is easy if ∆ and hence all subgroups are non-arithmetic
Fuchsian groups because then by a theorem of Margulis [8] the commensurator
∆ is a finite extension of ∆ . In this case, it is well known that ∆ is itself a
triangle group, and consulting Takeuchi’s list of arithmetic triangle groups [15]
and Singerman’s list of inclusion relations [11] it is easy to see that the index
(∆ : ∆) is at most 6 . So we have the first part of

Theorem 1 Surface groups contained in a non-arithmetic Fuchsian triangle
group ∆ belong to isomorphic surfaces if and only if they are conjugate in
a maximal Fuchsian triangle group ∆ extending ∆ . They fall in at most 6
different conjugacy classes under conjugation by ∆ .
If S is such a surface group then d(∆,S) = 1, 3 or 4.

Proof The second part of the theorem follows from the fact that non–normal
inclusions ∆ > ∆ of non-arithmetic triangle groups occur only with index 3
for ∆(2, 3, 2n) > ∆(2, n, 2n) or 4 for ∆(2, 3, 3n) > ∆(3, n, 3n) .

2 Arithmetic surface groups, localization

Now we concentrate on the remaining case that S and ∆ are arithmetic Fuch-
sian groups, i.e. commensurable to a norm 1 group M1 of a maximal order
M in a quaternion algebra A defined over a totally real number field k and
having precisely one embedding into the matrix algebra M2(R) . The situa-
tion here is quite different, as indicated already by the analogous question for
normal subgroups in Theorem 3 of [5]. By [15] we know which triangle groups
can be identified with the norm 1 group of a maximal order, and most of the
arguments will be applied to these cases. However, in general ∆ is only com-
mensurable to the norm 1 group of a maximal order in a quaternion algebra,
so we will consider in Section 6 how far the result is changed by passing to a
commensurable group.

Since we have to work in the quaternion algebra A it is often necessary
to replace all Fuchsian groups Γ above with their preimages Γ̂ in SL2R .
However, if it is clear from the context where the groups are situated, we will
often omit the hat to simplify the notation.

We consider now the norm 1 group Φ := M1 (which in most cases is a
triangle group itself [15]) and restrict our attention to common finite index
subgroups S of Φ and β−1Φβ and the possible conjugators β in this con-
figuration. Clearly, conjugation by such a β induces an automorphism of the
quaternion algebra, therefore the Skolem–Noether theorem ([16], Ch. I, Thm
2.1) allows to replace β with a more convenient element α ∈ A . By multipli-
cation with a denominator in the integers of k we can even suppose α to be in
the maximal order M .
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Theorem 2 Let Φ be the norm 1 group of a maximal order M as above, and
suppose β ∈ SL2R such that Φ ∩ β−1Φβ have finite index in Φ and β−1Φβ .
Then β can be replaced with a scalar multiple α ∈ GL+

2 R ∩M ⊂ A .

Under these conditions Φ∩α−1Φα is the norm 1 group of an Eichler order
(i.e. the intersection of two maximal orders in A [16], p. 20) M ∩ α−1Mα .
The index of Φ∩α−1Φα in Φ gives a lower bound for (Φ : S) where S denotes
a surface group contained in both Φ and α−1Φα . The program is therefore

– to understand how d(Φ, S) depends on S and
– to determine (Φ : Φ ∩ α−1Φα) =: s as a function of α .

For arithmetic triangle groups one has the additional advantage that all
quaternion algebras in question have class number 1 ([15], Prop. 3), therefore
all Eichler orders are intersections of conjugate maximal orders ([16], Ch. I,
Cor. 4.11). So counting multiple dessins on S\H amounts to count maximal
orders containing Ŝ .
Maximal orders are easier to classify locally, i.e. over local fields, and the class
number 1 property makes it easy to apply the strong approximation theorem
passing to local maximal orders because there are bijections between

– prime ideals in the ring of integers O of the center k of the quaternion
algebra A

– inequivalent primes π in O generating these prime ideals (without loss of
generality we will suppose π > 0 )

– inequivalent discrete valuations v of A
– inequivalent completions Av = Aπ , Mv = Mπ of the quaternion algebra

and a maximal order with respect to v
– two–sided prime ideals in M , all of the form πM .

Recall that Av is a skew field if and only if π ramifies in A , i.e. if it belongs
to the finite number of discriminant divisors. In this case, Mv is the unique
maximal order of Av ([16], Ch. II, Lemme 1.5), therefore there are no Eichler
orders at all. In all other (unramified) cases we get matrix algebras Av

∼=
M2(kv) , Mv

∼= M2(Ov) where Ov denotes the ring of integers in the local
field kv , i.e. the completion of O in kv . This ring has the unique prime ideal
P = πOv , and all Eichler orders are conjugate to a ring of matrices(

a b
c d

)
with a, b, d ∈ Ov , c ∈ Pn

for some positive integer n (Pn is the level of the Eichler order). This local
Eichler order is in fact an intersection Mv ∩α−1Mvα of two maximal orders

conjugate by some α ∈ M∗
v

(
πn 0
0 1

)
⊂ M2(Ov) .

The strong approximation theorem allows now to trace back all consider-
ations about conjugations or Eichler orders to simultaneous localizations. We
need in particular the following two consequences.

Fact 1 For all inequivalent discrete valuations v of the quaternion algebra A
let Mv be a maximal order in Av . Suppose that Mv = M2(Ov) for almost all
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v . Then there is a maximal order M in A such that all Mv are the localizations
( = completions in the v–adic topology) of M .

Fact 2 For all inequivalent discrete valuations v of the quaternion algebra A
let Sv be a group commensurable to the norm 1 group M1

v . Suppose Sv = M1
v

for almost all v . Then there is a multiplicative group S ⊂ A∗ commensurable
to the global norm 1 group M1 ⊂ A∗ whose localizations are the groups Sv .

Definition 2 Let the Fuchsian group Φ (more precisely, its SL2(R)–preimage)
be commensurable to the norm 1 group M1 of a maximal order M in a quater-
nion algebra A of class number 1 and let π be a prime in the totally real field
k , the center of A . For a subgroup S < Φ of finite index let Sπ := Sv and
Φπ := Φv be their closure (v–completion) in Av where v is the discrete valua-
tion corresponding to π .
We will denote by dπ(Φ, S) the number of all local conjugates α−1Φπα con-
taining Sπ , and by bπ(Φ,mπ) the maximum of all those dπ(Φ, S) for which
the v–completion Sπ of S has index (Φπ : Sπ) ≤ mπ .
In the case of Φ = M1 one may define dπ(Φ, S) also as the number of maximal
orders α−1Mvα containing Sπ .

For almost all π the v–completion is Sπ = Φπ , hence dπ(Φ, S) = 1 .
Therefore the first product in Theorem 3 below has only finitely many factors
̸= 1 . We will see in Remark 1 (next section) that the same property holds for
the product b(Φ,m) because for every M > 1 there is only a finite number of
possible π with 1 < mπ < M , and for mπ = 1 we have clearly bπ(Φ, 1) = 1 .
Up to this finiteness property Theorem 3 follows directly with simultaneous
localization and the consequences of the strong approximation theorem stated
above.

Theorem 3 For a finite index subgroup S of the arithmetically defined Fuch-
sian group Φ and under these notations we have

d(Φ, S) =
∏

dπ(Φ, S) and b(Φ,m) = max∏
mπ≤m

∏
bπ(Φ,mπ)

where all products run over the inequivalent primes of k not dividing the dis-
criminant of A , and the maximum runs over all infinite sequences (mπ)π of
positive integers indexed by these inequivalent primes.

3 The local situation

Now we have to determine these factors in the localized quaternion algebras
of type Av

∼= M2(kv) . We omit the ramified primes because for them we have
dπ(Φ, S) = 1 , hence bπ(Φ,mπ) = 1 for all mπ > 1 . We begin with a study of
the Eichler orders of level P (omitting the hat again).

For this study it will be helpful to consider the tree of maximal orders as
described in [16] pp. 40-41. Maximal orders of a split local quaternion algebra
Av correspond to the vertices of a tree. Two vertices are joined by an edge if
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and only if the corresponding maximal orders are conjugate under an element
whose norm is in O∗

vπ , and the tree is regular with valency q+1 in every vertex
(see Figure 1) where the norm q = N(π) denotes the number of elements of
the residue class field Fq = Ov/P .

Fig. 1 Part of the tree of local maximal orders for q = 5.

We can identify Eichler orders of level P with edges and Eichler orders of
level Pn with paths of length n in the tree joining Mv with other vertices
(maximal orders α−1Mvα , α of norm πn ). As can be seen in

Mv > Mv∩
(
π 0
0 1

)−1

Mv

(
π 0
0 1

)
> . . . > Mv∩

(
π 0
0 1

)−n

Mv

(
π 0
0 1

)n

,

an Eichler order is contained in all the maximal orders corresponding to ver-
tices lying in the path. By the same reason, we have

Lemma 2 Let S be a finite index subgroup of the norm 1 group Φ of the
maximal order M . Then all vertices corresponding to local maximal orders
Φπ–conjugate to Mv containing Sπ form the vertices of a finite subtree, and
dπ(Φ, S) counts the vertices of this subtree.

Definition 3 Let Sπ be a finite index subgroup of Φπ. We denote by T (Sπ)
the subtree of maximal orders of the local quaternion algebra Aπ whose vertices
correspond to the maximal orders containing Sπ .

We will see in the following how these subtrees can look like. We begin
with the simplest cases. In the rest of this section, we will consider only the
local situation, so we omit the index π as long as the groups are concerned.

Lemma 3 Let Φ be the norm 1 group of the local maximal order Mv =
M2(Ov) , Ov the ring of integers in the local field kv with maximal ideal P
and residue class field Ov/P = Fq . Now we consider Φ and its subgroups as
subgroups of PSL2(Ov) , i.e. modulo ±Id. Then

1. the norm 1 group Φ0 = Φ0(P) of an Eichler order of level P has index
q + 1 in Φ , and for these groups, dπ(Φ,Φ0) = 2 .
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2. The norm 1 group Φ0
0 = Φ0

0(P) of the intersection of two Eichler orders
of level P has index q(q + 1) in Φ , and for these groups,

dπ(Φ,Φ
0
0) = 3 if q > 3 ,

dπ(Φ,Φ
0
0) = 4 if q = 2 and dπ(Φ,Φ

0
0) = 5 if q = 3 .

3. The norm 1 group Φ(P) in the intersection of more than two Eichler orders
of level P is the principal congruence subgroup mod P of Φ , a normal
subgroup of Φ of index 1

2q(q
2 − 1) (omit the denominator 2 if q is a 2–

power). It is the intersection of all such Eichler orders of level P and
satisfies dπ(Φ,Φ(P)) = q + 2 .

Proof The proof is easy if one considers the canonical operation of Φ on the
projective line P1(Fq) given by reduction mod P . In this frame, the groups
Φ0 are the subgroups fixing one point, Φ0

0 are those fixing two points, and
if more than two points are fixed, all points of the projective line are fixed,
hence the last case gives already the principal congruence subgroup. Recall
that dπ is always 1+ the number of Eichler orders involved since we have to
count Mv as well. The cases q = 2 and 3 play a special role because for them
Φ0
0(π) = Φ(π) : recall that we see them as projective groups, and since the

determinants are 1 , in the case of small q all matrices in Φ0
0(π) are congruent

mod π to ± the unit matrix.
For the calculation of the indices one may consult [16] p. 109 or mimic a
proof from any book about modular forms. Alternatively one may consider
the groups involved as the stabilizers of one point, two points or the whole
projective line, and then the index is given by the number of elements in the
orbit of the fixpoints.

Lemma 4 For integers n > 1 there are qn−1(q + 1) different local Eichler
orders Mv ∩α−1Mvα of level Pn . Their norm 1 groups Φ0(Pn) have index
qn−1(q + 1) in Φ . They satisfy

dπ(Φ,Φ0(Pn)) = n+ 1 for q > 3 ,

dπ(Φ,Φ0(Pn)) = 3n− 1 for q = 3 ,

dπ(Φ,Φ0(Pn)) = 2n for q = 2 , n = 2 or 3 and

dπ(Φ,Φ0(Pn)) ≥ 4n− 6 for q = 2 , n ≥ 4 .

The intersection of all these norm 1 groups is the principal congruence sub-

group Φ(Pn) and satisfies dπ(Φ,Φ(Pn)) = (q+1)(qn−1)
q−1 + 1 .

Proof To prove that there are precisely qn−1(q+1) such Eichler orders of level
Pn with norm 1 group Φ0(Pn) one may just count paths of length n in the tree
of maximal orders, with one end fixed in the vertex Mv. Therefore, following
the unique path in the tree of maximal orders we find a corresponding unique
chain of Eichler orders proving the claim about their numbers. For q > 3
the number q + 1 of vertices on this path gives also the number of maximal
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orders containing Φ0(Pn) since otherwise Φ0(Pn) would be contained in more
than one Eichler order Mv ∩ α−1Mvα of level Pm for some m ≤ n . To see
that this is impossible, one can generalize the argument sketched in the proof
of Lemma 3 defining a kind of “projective line” P1

m over the residue class
ring O/πm ∼= Ov/Pm as set of pairs of residue classes, not both in πO/πm ,
modulo the unit group of this residue class ring. The norm 1 group Φ acts in
a natural way on this P1

m , and its subgroup Φ0(Pn) has precisely one fixed
point on it if q > 3 , in contrast to all groups of type Φ0

0(Pm) having at least
two fixed points on P1

m . So one has in fact dπ(Φ,Φ0(Pn)) = n + 1 . All but
the final among these Eichler orders belong to lower levels, so by induction on
n one gets the result about dπ(Φ,Φ(Pn)) for q > 3 . For the index formula
one may use the same argument of the previous Lemma, this time considering
the action on P1

n, or use [16] p. 55. For q = 2 and 3 it is no longer true that

Fig. 2 Subtree for Φ0(π4), in the cases q = 5, 3 and 2.

Φ0(Pn) has precisely one fixed point on P1
m : an exercise in congruences shows

that

Φ0(Pn) = {
(
a b
c d

)
∈ Φ ⊂ M2(Ov) | c ≡ 0 mod πn}

fixes not only

[
1
0

]
∈ P1

m but also all

[
1
x

]
, x ≡ 0 mod πm−1 , and for

q = 2 , m ≥ 4 moreover

[
1
x

]
for all x ≡ 0 mod πm−2 . As indicated in

Figure 2 the subtree of maximal orders containing Φ0(Pn) is therefore larger
than the simple path joining two extremal vertices as in the case q > 3 .
However, the index formula and the result about dπ(Φ,Φ(Pn)) remain true
also in these cases. (A more detailed case by case analysis shows that in the
case of cocompact arithmetic triangle groups the last assertion is even true
with “=” instead of “≥ ”.)

As an illustration for the result concerning the principal congruence sub-
groups, we give here the picture of the subtree for Φ(π2) in the case q = 7 .

Remark 1 For fixed m only a finitely many primes π in k lead to a residue
class field with q < m , so the products in Theorem 3 are well defined.
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Fig. 3 Subtree for Φ(π2) in the local algebra Aπ for q = 7

Lemma 5 Let G be a finite index subgroup of the norm 1 group Φ in a local
maximal order Mv of the quaternion algebra Av . Then the subtree T (G) is
determined by two integers n, k ≥ 0 in the following way. There is a simple
path C of length k in T (G) such that the vertices of T (G) consists precisely
of those vertices in the tree of local maximal orders having distance ≤ n from
C , the “spine” of T (G) .

Figure 1 gives an illustration of such a subtree for n = k = 2 and q = 5,
Figure 2 gives such subtrees for (n, k) = (0, 4) , (1, 2) and (2, 0) in the cases
q = 5, q = 3 and q = 2, and Figure 3 gives another example of (n, k) = (2, 0) ,
this time for q = 7 .

Proof 1. Let n be the maximal integer such that there is a vertex v whose full
distance n neighbourhood belongs to T (G), in other words with the property
that all other vertices of distance ≤ n in the tree of all local maximal orders
belong to T (G) . If T (G) has no other vertex outside this neighbourhood of
radius n around v , the claim is true with k = 0 .
2. If T (G) contains more vertices than those of distance ≤ n from v = v0 , it
contains a vertex vn+1 of distance n+1 since T (G) is a subtree by Lemma 2.
The next vertex v1 on the simple path from v0 to vn+1 has then also the
property that all vertices with distance ≤ n from v1 belong to T (G) . In fact,
suppose that v0 corresponds to the standard maximal order M2(Ov) , then we
can suppose via conjugation in Φ that G is contained in Φ(πn) ∩ Φ0(π

n+1) .
This group is contained in qn Eichler orders Mv ∩ α−1Mvα of level Pn+1 :
as in the proof of Lemma 4 consider its action on the generalized projective
line P1

n+1 ; if a ≡ d ≡ 1 mod πn , b ≡ 0 mod πn and c ≡ 0 mod πn+1 with
ad− bc = 0 , then another easy exercise in congruences shows that the matrix(
a b
c d

)
not only fixes the point

[
1
0

]
∈ P1

n+1 but all qn points

[
1
x

]
with
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x ≡ 0 mod π . This means in particular that the subtree T (Φ(πn)∩Φ0(π
n+1))

has qn more vertices than T (Φ(πn)) .
3. Apparently, v0 and v1 are both vertices of the spine C which may be con-
structed by an obvious continuation of this idea. Suppose we have already
a simple path of length m > 0 whose vertices wj , j = 0, . . . ,m , belong to
T (G) together with all their neighbours of distance ≤ n . If T (G) has no other
vertex, we have already the desired subtree with m = k .
4. If not, T (G) contains a vertex v′ of distance > n from all wj . Then choose
that wj with minimal distance from v′ — it is in fact unique since we have a
tree —, join it to v′ by a path inside T (G) and apply part 2 of the proof again
to see that the neighbour of wj on this path is again a vertex of C .
5. Now there could be two possibilities. First, wj is a boundary point of the
path we already found, say w0 or wm . In this case, the new neighbour (w−1

or wm+1 , say) continues the path C .
6. Second, the new vertex w of C could be a third neighbour of wj together
with wj−1 and wj+1 . This case is impossible by a similar reason as given in the
proof of Lemma 3, part 3: Let wj denote the standard maximal order M2(Ov) .
Since C contains three different neighbours of wj and all their neighbours of
distance ≤ n , we can suppose that G is contained in Φ(πn) ∩ Φ0

0(π
n+1) and

fixes — acting on P1
n+1 — moreover also some point

[
y
x

]
where both x and

y are note divisible by π . But in that case we have G ≤ Φ(πn+1) meaning
that all vertices of distance ≤ n+1 from wj belong to T (G) in contradiction
to our choice of n .

As a side result of this proof we note the number of vertices in T (G) .

Lemma 6 Under the same hypotheses as in Lemma 5 the number of vertices

in T (G) is dπ(Φ,G) = 1 + (q+1)(qn−1)
q−1 + kqn .

Remark 2 For q > 3 all choices of the parameters n and k are possible: take
G := Φ(πn) ∩ Φ0(π

n+k) in the Lemmas 5 and 6. The cases q = 2 and 3
behave differently as already seen in Lemma 4 and its proof: for k ≥ 2 we
have Φ0(π

2) ∼= Φ(π) hence n ≥ 1 ; and for q = 2 , k ≥ 4 we have even n ≥ 2 .
In fact, one may prove that in the latter case Φ0(π

4) is conjugate in the local
algebra to Φ(π2) . Take Figure 2 as an illustration of the subtrees T (G) for
the groups G = Φ0(π

4) and Φ0
0(π

2) as well.

For the next lemma we note first — generalizing the statement of Lemma
3, part 3 — that the index of the principal congruence subgroup Φ(Pn) itself
in Φ is

i(π, n) :=
1

2
· q3n−2(1− 1

q2
) (without the factor

1

2
if q is a 2–power) .

To perform induction over the levels, observe that for all n > 0 the quotient
Φ(Pn)/Φ(Pn+1) is abelian, more precisely isomorphic to the additive group
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of the vector space F3
q . By the same arguments we obtain for n, k > 0 the

index formula

(Φ : (Φ(πn) ∩ Φ0(π
n+k)) = i(π, n) · qk .

Lemma 7 If q > 3,

bπ(Φ, i(π, n)) =
(q + 1)(qn − 1)

q − 1
+ 1

for all positive integers n .

Proof We have to show that besides the principal congruence subgroups of
level Pn all other subgroups S ⊂ Φ of index ≤ i(π, n) are contained in a
smaller number of maximal orders. We can suppose that S is already a norm
1 subgroup G of an intersection of Eichler orders as discussed in Lemmas 5
and 6. Since i(π, n) grows with q3n and dπ(Φ,G) for subgroups of index
i(π, n′)qk ≤ i(π, n) grows at most like (1+k) ·qn′

, the maximal dπ is certainly
obtained for n = n′ , k = 0 i.e. for the principal congruence subgroups.

4 Global consequences

It remains to insert the results of the previous section in Theorem 3 and to
illustrate these by examples. We begin with an obvious necessary condition
for the existence of at least two different uniform dessins of the same type on
a Riemann surface of genus > 1 , crucial for the construction of low genus
examples.

Theorem 4 Let S be an arithmetic Fuchsian surface group contained in the
triangle group ∆ , and suppose ∆ to be the norm 1 group M1 in a maximal
order M of a quaternion algebra A defined over the totally real field k with
ring of integers O . The group S is contained in more than one group conjugate
to ∆ in PSL2R if and only if S is contained in a group conjugate in ∆ to

∆0(π) = {
(
a b
c d

)
∈ ∆ ⊂ M2(O) | c ≡ 0 mod π}

where π is a prime of k not dividing the discriminant of A .

Given S and ∆ as above one can use Theorem 3 and Lemma 6 to compute
the number d(∆,S) of different dessins on S\H .
Now we will concentrate on a series of striking examples. Take ∆ of signature
(2, 3, 7) . According to [15] this is the norm 1 group of a maximal order M
in a quaternion algebra A over the cubic field k = Q(cos 2π

7 ) . All primes π
of k are unramified in A . By a recent result of Džambić [2] all Macbeath–
Hurwitz groups — giving the most famous examples of Hurwitz surfaces —
are principal congruence subgroups in ∆. The first cases are
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– Klein’s quartic. Its surface group is ∆(π) for a prime π dividing 7 , ramified
of order 3 and of residue degree 1 in the extension Q(cos 2π

7 )/Q . With
q = 7 we see that Klein’s quartic has 8 non–conjugate uniform dessins of
type (2, 3, 7) plus the usual regular one.

– Macbeath’s curve of genus 7 with automorphism group PSL2(F8) has the
surface group ∆(2) for the prime π = 2 , inert and of residue degree 3 in
the extension Q(cos 2π

7 )/Q . With q = 8 one has 9 uniform dessins plus a
regular one on the curve.

– Three non–isomorphic curves in genus 14 with automorphism group
PSL2(F13) whose surface groups are the principal congruence subgroups
∆(πj), j = 1, 2, 3 for the (completely decomposed) primes πj dividing 13 .
Their residue degree is 1 , hence one has q + 1 = 14 uniform dessins of
type (2, 3, 7) on each curve plus a regular one.

All dessins mentioned here are clearly not renormalizations of each other since
the signature consists of three different entries. On the other hand, in all these
cases we have one regular dessin and q + 1 uniform non–regular ones which
form an orbit under the automorphism group of the curve: the q + 1 norm
1 groups of type ∆0(π) are conjugate under the action of ∆ or — in other
words — the q + 1 Eichler orders of level P form a ∆–invariant set, so these
dessins are equivalent under automorphisms of the curve.

Up to conjugation, we have therefore only the rather modest number of
two essentially different dessins of the same type. Similarly, even if ∆0(π) in
Theorem 4 was torsion free, the two different dessins on the curve ∆0(π)\H
are equivalent under the action of the Fricke involution, conjugate in M2(Ov)

to ρ =

(
0 π
−1 0

)
, and two among the three dessins on a curve ∆0

0(π)\H are

equivalent under an involution as well, conjugate in M2(Ov) to

(
0 −1
1 0

)
.

However replacing these congruence groups with subgroups of small index
we can remove automorphisms such that most of the uniform dessins found
here become inequivalent under automorphisms, see Remark 3 below.

Next we consider the growth of the maximal number of uniform dessins on
surfaces S\H depending on the index (∆ : S) in a given triangle group.

Theorem 5 Let the Fuchsian group Φ be the norm 1 group of a quaternion
algebra. Then

b(Φ,m) = O( 3
√
m)

and this upper bound is optimal in the following sense. There are sequences
of surface groups Sn < Φ with indices (Φ : Sn) → ∞ such that for the
numbers d(Φ, Sn) of all residue classes α ∈ PSL2R/N(Φ) with the property
Sn ⊂ α−1Φα we have

lim
n→∞

d(Φ, Sn)
3
√

2(Φ : Sn)
= 1 .

Proof The proof follows from the last part of Theorem 3 if we use the fact that
the index m = (Φ : S) grows at least like the product of all indices mπ of the
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localizations, and for these we can apply Lemma 6 together with the formula
for the indices of the principal congruence subgroups. For the sequence Sn one
may take any sequence of principal congruence subgroups Φ(P) with prime
ideals P = πOv such that O/π ∼= Fq , q → ∞ . Observe that only finitely
many among the Sn can have torsion.

Remark 3 One may replace this sequence Sn of surface groups with a sequence
Gn whose normalizers are by far smaller. We start with the principal congru-
ence subgroups Φ(πn) where we suppose for simplicity (satisfied in the case of
arithmetic triangle groups) that

– the center field k has class number 1 ,
– π is a prime in k not dividing the discriminant of the algebra A ,
– dividing a prime p ∈ Z , p > 3 , split in k (infinitely many such primes

exist by Dirichlet’s prime number theorem),
– hence with norm q = p ,
– and n so large that Φ(πn) is torsion free of genus g = gn .

The index of Φ(πn) in the norm 1 group Φ = M1 is 1
2 (p

2 − 1)p3n−2 , and the
normalizer in PSL2R of any finite index subgroup Gn < Φ(πn) is contained
in the unit group A∗, more precisely in its projective image PA∗ , see the
Skolem–Noether arguments used in the proof of Theorem 2. By the same
reasons we can represent all elements of N(Gn) by elements of A∗ ∩ M .
Dividing out unnecessary factors we can moreover suppose that these elements
are not divisible by primes ρ of Ok . If two such elements α, β fall in the same
residue class in PA∗/Φ(π) , they satisfy σα ≡ τβ mod πM for some coprime
σ, τ ∈ Ok not divisible by π (otherwise α or β would be divisible by π). The
number of these residue classes is therefore less than p4 , the number of residue
classes in M/πM ∼= M2(Ok/πOk) .

We note first that the group isomorphism

N(Gn)Φ(π)/Φ(π) ∼= N(Gn)/(N(Gn) ∩ Φ(π))

and the above count of residue classes gives

(N(Gn) : (Φ(π) ∩N(Gn))) ≤ (PA∗ : Φ(π)) < p4 .

Second, if we succeed to construct Gn in such a way that N(Gn) ∩ Φ(π) =
N(Gn)∩Φ(πn) , there is a bijection between the residue classes of N(Gn) mod
πn and those of N(Gn) mod π . If so, we can deduce

(N(Gn) : Gn) ≤ (N(Gn) : (Φ(π
n) ∩N(Gn))) · (Φ(πn) : Gn)

≤ (N(Gn) : (Φ(π) ∩N(Gn))) · (Φ(πn) : Gn) < p4 · (Φ(πn) : Gn) .

As third step it remains therefore to construct a subgroup Gn of of small
index in Φ(πn) such that N(Gn) ∩ Φ(π) = N(Gn) ∩ Φ(πn) . We begin with
the observation that the group Φ(π)/Φ(πn) is generated by three elements of
order pn−1 , namely(
1 0
π 1

)
,

(
1 π
0 1

)
,

(
a 0
0 d

)
with a = 1+π , d = 1−π+π2−. . . ≡ a−1 mod πn .
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In fact, Φ(π)/Φ(πn) is a p–group, every element γ has an order pk such that

γpk−1 ∈ Φ(πn−1)/Φ(πn) is an element of order p . As already mentioned in the
last section, this quotient group Φ(πn−1)/Φ(πn) is abelian and isomorphic to
the additive group of F3

p .
Recall that Φ(πn) is torsion free, generated by aj , bj , j = 1, . . . , g with the

single generating relation
∏
[aj , bj ] = 1 , and that these generators correspond

to the generators of the homology of the surface X1 := Φ(πn)\H , isomorphic
to Z2g . Let γ1 one of the above generators of of Φ(π)/Φ(πn) of order pn−1

and δ1 := γpn−2

1 . Conjugation of Φ(πn) by the elements of N(Φ(πn)) induces
an effective action of the automorphism group of the surface on its homology,
and since the subgroups ⟨γ1⟩ > ⟨δ1⟩ have odd order, they act effectively on
the quotient (Z/2Z)2g as well: consider the complex representation and its
corresponding modular representation over an algebraic closure of F2 . There-
fore there is a generator — a1 , say — sent by δ1 to some δ1(a1) ̸≡ a1 mod 2 .
Looking at generators and relations of Φ(πn) there is hence a character

χ1 : Φ(πn) → {±1} with χ1(a1) = −1 , χ1(δ1(a1)) = 1

whose kernel is not invariant under δ1 , therefore not invariant under any non-
trivial element of the cyclic group ⟨γ1⟩ . So the intersection (N(Kerχ1) ∩
Φ(πn−1))/Φ(πn) can be an at most 2–dimensional Fp–vector space. If it is
nontrivial, take an element γ2 ∈ N(Kerχ1) ∩ Φ(π) of maximal order pk > 1 ,

define δ2 := γpk−1

2 ∈ Φ(πn−1) and consider its action on the homology of the
surface X2 := Kerχ1\H . Again it is effective and we can define a character
χ2 : Kerχ1 → {±1} whose kernel is not invariant under conjugation by δ2
and a fortiori not under conjugation by γ2 nor δ1 nor γ1 . Now the intersection
(N(Kerχ2) ∩ Φ(πn−1))/Φ(πn) is at most onedimensional in F3

p and we can
finish the construction by taking a γ3 ∈ N(Kerχ2) ∩ Φ(π) of maximal or-
der modΦ(πn) and defining a χ3 : Kerχ2 → {±1} as above to be sure that
N(Kerχ3) ∩ Φ(π) ≤ Φ(πn) .

Define Gn := Kerχ3 (or Kerχ2 or Kerχ1 if there is no nontrivial γ3
or γ2 , respectively). This group satisfies our hypothesis in the second step,
hence (N(Gn) : Gn) < 8p4 . Therefore, the surface Gn\H has less than 8p4

automorphisms and, by Theorem 3 together with Lemma 7 more than

1

8p4

(
(p+ 1) · p

n − 1

p− 1
+ 1

)
uniform dessins inequivalent under automorphisms.

As in Lemma 1, we can describe the growth result given in Theorem 5 also
in terms of the genus, by Remark 3 now in a stronger version:

Corollary 1 The number of uniform dessins not equivalent under renormal-
ization or automorphisms on a Bely̆ı surface grows with the genus g at most
as a multiple of 3

√
g , and this bound is optimal.
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5 A geometrical description

We explore now the examples given in Section 4 in a more geometrical way.

Klein’s quartic
Klein’s quartic is a genus three surface uniformized by a group S generated

by certain side-pairings in the regular 14-gon P with angle 2π/7 (see Figure 4).
The (black and white) triangles in Klein’s original picture are related to the
triangle group ∆(2, 3, 7) of signature (2, 3, 7) in which S is normally contained
with index 168.

Fig. 4 Klein’s surface is obtained by the side pairing 1 ↔ 6, 3 ↔ 8, 5 ↔ 10, 7 ↔ 12,
9 ↔ 14, 11 ↔ 2, 13 ↔ 4.

The inclusion S � ∆(2, 3, 7) induces a regular Bely̆ı function on S. The
corresponding regular dessin D can be easily depicted in P with the help of
the triangle tessellation associated to ∆(2, 3, 7) (see left picture on Figure 5).

Rotate now D – or rather its lift to the universal covering D – by an angle
2π/14 around the origin. The graph D′ obtained is compatible with the side-
pairing identifications, hence it is a well defined dessin on the surface. It is
rather obvious that D′ decomposes the surface into 24 heptagons in the same
way as D does. In other words D′ is also a uniform (2, 3, 7) dessin on S\H
(see right picture on Figure 5). Note that the rotation that transforms D into
D′ does not correspond to any automorphism of the surface, and in fact both
dessins are not isomorphic since D′ is not regular.
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Fig. 5 Klein’s regular (2, 3, 7) dessin D and a uniform one D′.

The existence of a new uniform dessin of type (2, 3, 7) is clear if one stud-
ies all triangle groups in which S is contained. We started with the normal
inclusion S�∆(2, 3, 7), but S is also normally contained in the obvious group
∆(7, 7, 7) that has one seventh of the 14-gon as fundamental domain. The cor-
responding regular (7, 7, 7)−dessin lies in the border of the polygon: it has one
black vertex, one white vertex, and seven edges. There is even a group∆(3, 3, 7)
lying between ∆(7, 7, 7) and ∆(2, 3, 7) that defines another regular dessin of
type (3, 3, 7). The chain of inclusions S < ∆(7, 7, 7) < ∆(3, 3, 7) < ∆(2, 3, 7)
means that the corresponding regular dessins are related by refinement.

The full diagram of triangle groups lying above S is nevertheless larger.
Looking at Singerman’s inclusion list we find

∆(2, 3, 14) ∆(2, 3, 7)

∆(2, 7, 14)

ppppppppppp
∆(3, 3, 7)

MMMMMMMMMM

∆(7, 7, 7)

NNNNNNNNNNN

qqqqqqqqqq

S

oooooooooooo

(1)

The groups ∆(2, 7, 14) and ∆(2, 3, 14) are the index two (therefore normal)
extensions of ∆(7, 7, 7) and ∆(3, 3, 7) obtained by addition of a new element
ρ which is a rotation of angle 2π/14 around the origin. The corresponding
dessins of type (2, 7, 14) and (2, 3, 14) are not regular but only uniform (as
already noticed in [13]), and are obtained from those of types (7, 7, 7) and
(3, 3, 7) by colouring all the vertices with the same colour, say black, and then
adding white vertices at the midpoints of the edges.
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Conjugation of diagram (1) by ρ fixes all the groups except S and∆(2, 3, 7):

∆(2, 3, 14) ∆(2, 3, 7) ρ∆(2, 3, 7)ρ−1

∆(2, 7, 14)

ppppppppppp
∆(3, 3, 7)

MMMMMMMMMMM

ooooooooooo

∆(7, 7, 7)

NNNNNNNNNNN

qqqqqqqqqq

S

ppppppppppppp
ρSρ−1

MMMMMMMMMM

(2)

The inclusion S < ρ∆(2, 3, 7)ρ−1 corresponds to the uniform dessin D′

described above. Since the normalizer of S is ∆(2, 3, 7) the inclusion of S in
ρ∆(2, 3, 7)ρ−1 is not normal, hence D′ is not regular.

Now we focus in the group ∆(3, 3, 7) lying in the middle of diagrams (1)
and (2). It is a known fact [5] that a given triangle group of type (3, 3, 7) is
contained in precisely two different groups of signature (2, 3, 7) (∆(2, 3, 7) and
ρ∆(2, 3, 7)ρ−1 in our case). Reciprocally, any given ∆(2, 3, 7) contains eight
different subgroups of signature (3, 3, 7), all conjugate in ∆(2, 3, 7).

Let a1∆(3, 3, 7)a−1
1 , . . . , a7∆(3, 3, 7)a−1

7 be the seven subgroups of∆(2, 3, 7)
conjugate to ∆(3, 3, 7), where ai ∈ ∆(2, 3, 7).

If we conjugate diagram (2) by ai we get

ai∆(2, 3, 14)a−1
i ∆(2, 3, 7) aiρ∆(2, 3, 7)ρ−1a−1

i

ai∆(2, 7, 14)a−1
i

qqqqqqqqqqq
ai∆(3, 3, 7)a−1

i

MMMMMMMMMM

ooooooooooo

ai∆(7, 7, 7)a−1
i

MMMMMMMMMMM

qqqqqqqqqq

S

qqqqqqqqqqqqq
aiρSρ

−1a−1
i

MMMMMMMMMM

(3)

Note that only ∆(2, 3, 7) and S remain fixed by this conjugation, since ai
belongs to ∆(2, 3, 7), the normalizer of S.

The inclusion S < aiρ∆(2, 3, 7)ρ−1a−1
i induces a new uniform (but not

regular) dessin of type (2, 3, 7) on S\H. It is related to the uniform dessin
D′ by the automorphism induced by ai, and to the regular dessin D by a
hyperbolic rotation of angle 2π/14 around the center of certain face of D.

Macbeath’s curve of genus seven
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The description of the uniform (2, 3, 7) dessins on Macbeath curve goes
more or less along the same lines as in the case of Klein’s quartic. Again the
surface group S is included normally in∆(2, 3, 7). The role played by the group
∆(3, 3, 7) in Klein’s quartic is played here by ∆(2, 7, 7). Note that the inclusion
∆(2, 7, 7) < ∆(2, 3, 7) is also very special (cf. [5]). The number of conjugate
subgroups of type (2, 7, 7) inside ∆(2, 3, 7) is nine, and any given ∆(2, 7, 7) is
contained in two different groups of type (2, 3, 7). The normalizer of ∆(2, 7, 7)
is now a (2, 4, 7)–group obtained by adding a rotation ρ of order 4 around any
of the points of order 2 in ∆(2, 7, 7).

This new element does not normalize ∆(2, 3, 7), so conjugation by ρ gives
rise to the second group ρ∆(2, 3, 7)ρ−1 in which ∆(2, 7, 7) is included:

∆(2, 4, 7) ∆(2, 3, 7) ρ∆(2, 3, 7)ρ−1

∆(2, 7, 7)

MMMMMMMMMM

ooooooooooo

S

qqqqqqqqqqqq
ρSρ−1

OOOOOOOOOOO

(4)

The inclusion of S inside ∆(2, 3, 7) and ρ∆(2, 3, 7)ρ−1 determines two non
isomorphic dessins on Macbeath’s curve. Once more the second inclusion is
not normal, and accordingly the second dessin is uniform but not regular.

Fig. 6 Face decomposition associated to regular and uniform dessins of type (2, 3, 7) on
Macbeath’s surface.

We can proceed in the same way with the other eight (2, 7, 7)–groups con-
tained inside ∆(2, 3, 7) to get diagrams similar to diagram (3). This way we
find the nine (isomorphic) uniform dessins predicted by the arithmetic argu-
ments of Section 4.
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There is obviously as well a uniform dessin of type (2, 4, 7), as already
noticed in [13].

Macbeath-Hurwitz curves of genus 14
The third example given in Section 4 arises from the consideration of the

three (torsion free) groups Si = ∆(πi)�∆(2, 3, 7) for inequivalent primes π1,
π2 and π3 dividing 13 in Q(cos π

7 ). These groups correspond to three Galois
conjugate curves [14] of genus 14 with a regular (2, 3, 7) dessin.

Now for each of these primes, we find ∆0(πi) lying between ∆(πi) and
∆(2, 3, 7). Its index inside ∆(2, 3, 7) is 14. By Singerman’s method for the
determination of signatures of subgroups of Fuchsian groups [10] it can be
seen that ∆0(πi) is a group of signature ⟨0; 2, 2, 3, 3⟩.

There is again an element ρi in the normalizer of ∆0(πi) that conjugates
∆(2, 3, 7) into a different group. The inclusion of ∆(πi) inside ρi∆(2, 3, 7)ρ−1

i

is no longer normal and gives rise to a non-regular uniform dessin on the same
Riemann surface.

Moreover, ∆(2, 3, 7) contains 14 different subgroups conjugate to ∆0(πi).
All of them include ∆(πi), therefore arguing as above we find 14 isomorphic
uniform (2, 3, 7) dessins.

6 Commensurability

The previous section has given a first geometric look onto uniform dessins
of arithmetic type. Some of the triangle groups involved are not the norm 1
group of a maximal order, but only groups commensurable to it. The number
of uniform dessins on a surface S\H , where S is contained in an arithmetic
triangle group ∆ , depends on the particular relation between ∆ and the cor-
responding norm 1 group. We shall focus on some relevant examples instead
of giving complete results for all arithmetic triangle groups.

We begin with the triangle group ∆(2, 3, 7) whose commensurable triangle
groups can be found in the graph (X) of [15] that we depict here:

∆(2, 4, 7) ∆(2, 3, 7) ∆(2, 3, 14)

∆(2, 7, 7)

2

FFFFFFFF
9

xxxxxxxx
∆(3, 3, 7)

8

FFFFFFFF
2

wwwwwwww
∆(2, 7, 14)

3

HHHHHHHHH

∆(7, 7, 7)

3

GGGGGGGGG
2

vvvvvvvvv

(5)

Diagrams (1) and (2) of the last section are contained in (5). As we already
know, the group S uniformizing Klein’s quartic is contained in∆(7, 7, 7). More-
over, S is a principal congruence subgroup for the prime π ∈ O dividing the
rational prime 7, or equivalently the kernel ∆(π) of the canonical epimorphism
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of ∆(2, 3, 7) onto PSL2(F7) (since N(π) = 7). Using Singerman’s procedure
again and considering the (transitive) action of ∆(2, 3, 7) on the 8 points of the
projective line P1(F7) it is an easy exercise to see that ∆0(π) = ∆(3, 3, 7) ,
and that its commutator subgroup is precisely ∆(7, 7, 7) , the preimage of the

cyclic subgroup {
(
1 b
0 1

)
| b ∈ F7} of PSL2(F7) .

The remaining groups

∆(2, 3, 14) = N(∆(3, 3, 7)) and ∆(2, 7, 4) = N(∆(2, 7, 7))

can be arithmetically constructed as the extensions of ∆0(π) and ∆(7, 7, 7)
by the Fricke involution.

What do these considerations mean for the existence and the number of
different dessins of the same type? First we have to note that for all discrete
valuations w of O not corresponding to the prime π | 7 the triangle groups
∆(2, 3, 7) , ∆(3, 3, 7) , ∆(7, 7, 7) have the same completion PSL2(Ow) , so the
situation and in particular the local counting functions d and b do not dif-
fer from ∆(2, 3, 7) with the single exception of the completion for π itself.
Second, recall that ∆(2, 3, 14) and ∆(7, 7, 7) are uniquely determined as the
normalizer and the commutator subgroup of ∆(3, 3, 7) , and that they have
three conjugate copies of ∆(2, 7, 14) in between, so it may be sufficient to con-
sider surfaces with different uniform dessins of type (3, 3, 7) . Groups of type
(3, 3, 7) are characterized as norm 1 groups of Eichler orders of level P = ⟨π⟩ .
Therefore the number of uniform (3, 3, 7)−dessins on the surface S\H is given
by the number of edges in the tree T (S) (see Definition 3), in contrast to the
case of (2, 3, 7)−dessins, where one must count vertices. We summarize some
possible extensions of Lemmas 4, 7 and Theorem 4 in the following Lemma.

Lemma 8 1) Let ∆ := ∆(2, 3, 7) and let π be the prime in k = Q(cos π
7 )

dividing q = 7 . The surface group S is contained in more than one group
conjugate to ∆(3, 3, 7) if and only if S is contained in a group conjugate to
∆0

0(π) .
2) For n > 0 we have dπ(∆(3, 3, 7), ∆(πn)) = (q + 1)(qn − 1)/(q − 1) =
4
3 (7

n − 1) = bπ(∆(3, 3, 7), 3 · 73n−2) .
3) If S is contained in d different groups conjugate to ∆(7, 7, 7) , then it is also
contained at least in d different groups conjugate to ∆(3, 3, 7) . Equality holds
if the minimal congruence subgroup containing S is a principal congruence
subgroup.

Remark 4 For n = 1 , S = ∆(π) , we have already seen that there are 8
possible dessins of type (3, 3, 7) on Klein’s quartic. They are even regular and
all equivalent under automorphisms of the surface, of course. As in Section
5, we can always pass from ∆(πn) to subgroups of small index to obtain
examples with many uniform dessins not equivalent under automorphisms.

In the commensurability diagram (5) there is a second branch given by

∆(2, 4, 7) > ∆(2, 7, 7) < ∆(2, 3, 7)
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already mentioned in the previous section during the construction of the uni-
form dessins inside Macbeath’s curve. Now let π be the prime 2 , inert in the
cubic field extension Q(cos π

7 )/Q , hence with residue class field F8 . Recall
from Section 4 that ∆(2) is the surface group of the Macbeath–Hurwitz curve
with automorphism group PSL2(F8) of order 504 = 9 · 8 · 7 , hence we have a
natural action of ∆ on the projective line with 9 elements such that ∆0(2) will
be the subgroup stabilizing one of these points on the projective line. On the
other hand, Singerman’s method gives the signature of this subgroup defining
a transitive action of ∆ on nine elements by e.g.

γ0 7→ (14)(23)(67)(89) , γ1 7→ (123)(456)(789) , γ∞ 7→ (1697543) .

The result is ∆0(2) = ∆(2, 7, 7) , and the extension by the Fricke involution is
just its normalizer ∆(2, 4, 7) . For the counting functions one may draw similar
conclusions as in Lemma 8. For example, the surface group S is contained in
more than one triangle group of type (2, 7, 7) if and only if it is contained in a
group conjugate to ∆0

0(2) . For another look onto the dessins of type (2, 7, 7)
also including noneuclidean cristallographic groups compare [12].

Our second example is given by Takeuchi’s diagram (XI). Here the norm
1 group is ∆ = ∆(2, 3, 9) containing the triangle group ∆(3, 3, 9) with index
4 .

∆(2, 3, 9) ∆(2, 3, 18)

∆(3, 3, 9)

4

HHHHHHHHH
2

uuuuuuuuu
∆(2, 9, 18)

3

JJJJJJJJJ

∆(3, 6, 18)

4

TTTTTTTTTTTTTTTT

∆(9, 9, 9)

3

IIIIIIIII
2

ttttttttt

(6)

The quaternion algebra is defined over the cubic field k := Q(cos π
9 ) and

is unramified. In k we have a ramified prime π | 3 of norm 3 , and sim-
ilarly to the inclusion ∆(3, 3, 7) < ∆(2, 3, 7) studied above we have here
∆0(π) = ∆(3, 3, 9) . There has to be an extension of index 2 by the Fricke invo-
lution, and in fact ∆(3, 3, 9) is normalized by the triangle group ∆(2, 3, 18) .1

The group ∆0(π) contains ∆0
0(π) with index N(π) = 3 , and there seems

to be a candidate: the subgroup ∆(9, 9, 9) < ∆(3, 3, 9) . But this group is
even not conjugate to ∆0

0(π) : as we have seen in Lemma 3 and its proof,
∆0

0(π) = ∆(π) and has normalizer ∆ = ∆(2, 3, 9) , whereas ∆(9, 9, 9) has
normalizer ∆(2, 3, 18) . There is no other candidate for a congruence subgroup
contained in ∆(9, 9, 9) , so this is a non-congruence subgroup of ∆ . Therefore,

1 The first and the last author have to mention that Table 1, case iv, in [5] needs a
minor correction: the claim is true that for ∆1 = ∆(3, n, 3n) there is only one supergroup
conjugate to ∆2 = ∆(2, 3, 3n) if n > 3 . However, two such supergroups exist in the case
n = 3 , conjugate under the Fricke involution.
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for all primes ̸= π dessins of type (9, 9, 9) behave as if ∆(9, 9, 9) were a norm
1 group, and for the prime π it behaves like those of type (3, 3, 9) because both
triangle groups belong to an uniquely determined Eichler order. The same is
true for the two other triangle groups ∆(3, 6, 18) and ∆(2, 9, 18) . They are
non-congruence subgroups as well.

Finally, commensurability between triangle groups may come also from
the fact that the norm 1 group of a quaternion algebra A is not maximal.
This happens if and only if the normalizer of a maximal order M is a proper
extension of the norm 1 group M1 . By [15] it is always a finite extension
of 2–power index generated by totally positive units of k and totally positive
primes π ∈ k dividing the discriminant D(A) . As an example, take the norm
1 group ∆ = ∆(3, 3, 6) of a quaternion algebra with center Q(

√
3) , extend

it by elements in GL2(O) of determinant ε = 2 +
√
3 , renormalize these

elements dividing by
√
ε to obtain elements in the extended triangle group

∆ = ∆(2, 3, 12) .

∆(2, 3, 12)

∆(3, 4, 12)

4
jjjjjjjjjjjjjjj

∆(3, 3, 6)

2

uuuuuuuuu
∆(2, 6, 12)

3

JJJJJJJJJ

∆(6, 6, 6)

3

IIIIIIIII
2

ttttttttt
∆(3, 12, 12)

2

KKKKKKKKK

(7)

Clearly, every uniform (3, 3, 6)–dessin on a surface with surface group S
can be extended to a (2, 3, 12)–dessin, but the converse may fail: a torsion
free subgroup S ⊂ ∆ is a subgroup of ∆ if and only if it consists of norm 1
elements in M . However, the intersection with ∆ has index at most 2 in S , so
we may use the fact that ∆ is the unique index 2 subgroup of ∆ to conclude

Lemma 9 1) For a surface group S ⊂ ∆ we have d(∆,S) = d(∆,S) .
2) For a surface group S ⊂ ∆ we have d(∆,S ∩∆) = d(∆,S) where
(S : S ∩∆) ≤ 2 .

As an exercise, the reader may prove that the triangle group ∆(3, 4, 12) ,
an index 4 subgroup of ∆ , is an index 2 extension of the congruence subgroup
∆0(

√
3) . The group ∆(6, 6, 6) is the unique index 3 normal subgroup of the

norm 1 group ∆ = ∆(3, 3, 6) , therefore it must be the principal congruence
subgroup ∆(1+

√
3) since the prime 1+

√
3 is the unique discriminant divisor

of the associated quaternion algebra [15]. It is a prime of norm 2 , therefore the
residue class field of the (unique!) maximal order is F4 , and ∆/∆(1+

√
3) has

to be isomorphic to its multiplicative group. An obvious variant of Theorem 4
for this triangle group is therefore

Lemma 10 A Fuchsian group S is contained in more than one conjugate of
the triangle group ∆(6, 6, 6) if and only if it is contained in a congruence
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subgroup ∆(1+
√
3)∩∆0(π) of the group ∆ = ∆(3, 3, 6) for a prime π of the

field Q(
√
3) not equivalent to 1 +

√
3 .

The triangle group ∆(2, 6, 12) can be obtained extending ∆(6, 6, 6) by ele-
ments of norm ε. It is a congruence subgroup of ∆(2, 3, 12) , whereas ∆(3, 12, 12)
seems to be a non–congruence subgroup.

7 A genus 2 surface with two uniform dessins

A complete list of all (isomorphism classes of) uniform dessins in genus 2 is
given in [13]. It is however not obvious if and when two such dessins – even if
they are of the same type – may belong to the same surface. The arithmetic
considerations of Section 6 about the ∆(2, 3, 9) group will allow to construct
an example of a genus 2 surface with two non isomorphic uniform dessins of
the same type.

Let us consider the ramified prime π ∈ Q(cos π
9 ) dividing 3.

For ∆ = ∆(2, 3, 9) we have the following chain of inclusions:

∆
4
> ∆0(π)

3
> ∆(π),

where ∆0(π) = ∆(3, 3, 9) and ∆(π) is the principal congruence subgroup of
level π, a Fuchsian group of signature ⟨0 ; 3, 3, 3, 3⟩. Moreover, since q = 3 we
have ∆(π) ≃ ∆0(π

2) (see Remark 2).
By the arithmetic theory developed before, the Fricke involution conjugates

∆(2, 3, 9) into another group ρ∆(2, 3, 9)ρ−1 such that:

∆(2, 3, 18) ∆(2, 3, 9) ρ∆(2, 3, 9)ρ−1

∆0(π) = ∆(3, 3, 9)

QQQQQQQQQQQQQ

llllllllllllll

∆(π)

(8)

Once again ρ is an extra rotation – of order 2 around a fixed point of order 9
– inside ∆(2, 3, 18), the normalizer of ∆(3, 3, 9). Let us note that conjugation
by the Fricke involution gives precisely the isomorphism between ∆(π) and
∆0(π

2) = ρ∆(π)ρ−1.
Now by Theorem 4 every surface group inside ∆(3, 3, 9) will have at least

two (2, 3, 9) dessins. By the list in [13] we know that in genus 2 there are 4
different dessins of this type. For two of them it can be seen, by computing
the monodromies and constructing a fundamental domain, that the Fricke
involution is an automorphism of the surface, and so the two dessins arising
from the arithmetic construction are isomorphic (see also [4]).

The other two are the dual dessins considered in [13], Section 11(d). To
find its surface group we can follow once more Singerman’s procedure, and it
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can be seen that it is possible to find a (normal) torsion free subgroup S of
index 3 in ∆(π). The indices (∆(3, 3, 9) : S) = 9 and (∆(2, 3, 9) : S) = 36 tell
us that it corresponds indeed to a genus 2 surface.

Fig. 7 Two non isomorphic uniform dessins of type (2, 3, 9) in the same surface.

The monodromies of the two dessins induced by∆(2, 3, 9) and ρ∆(2, 3, 9)ρ−1

are non conjugate inside S36 so they are not isomorphic as we already knew,
neither are they even equivalent under automorphisms or renormalization.

By [4] we know that the automorphism group of this surface Aut(S\H) ≃
N(S)/S is generated by the hyperelliptic involution J and two automorphisms
τ and σ3 of order 2 and 3 respectively. From the arithmetic point of view, we
can even say that ⟨S, σ̃3⟩ ≃ ∆(π), where σ̃3 denotes the lift of σ3 to H.

The lifts of all these automorphisms lie inside ∆(2, 3, 9), but J̃ , τ̃ , J̃τ ∈ N(S)
do not belong to ρ∆(2, 3, 9)ρ−1. Conjugation of ρ∆(2, 3, 9)ρ−1 by each of these
elements will determine another (2, 3, 9)-dessin isomorphic to the second one.
The same can be applied to ∆(3, 3, 9) and ∆(2, 3, 18). In particular ∆(3, 3, 9),

J̃(∆(3, 3, 9))J̃−1, τ̃(∆(3, 3, 9))τ̃ and J̃τ(∆(3, 3, 9))(J̃τ)−1 are the four different
(3, 3, 9) groups lying below a given ∆(2, 3, 9) ([5], p.9, Thm.6).
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The following diagram of inclusions shows all the dessins (modulo renor-
malization) in this surface. The notation Gσ stands for conjugation by σ:

∆(2, 3, 18)Jτ ∆(2, 3, 18)τ ∆(2, 3, 18)J ∆(2, 3, 18)

∆(2, 3, 9)ρJτ ∆(2, 3, 9)ρτ ∆(2, 3, 9)ρJ ∆(2, 3, 9)ρ ∆(2, 3, 9)

∆(3, 3, 9)Jτ

�����������������
∆(3, 3, 9)τ

�����������������
∆(3, 3, 9)J

�����������������
∆(3, 3, 9)

�����������������

uuuuuuuuu
N(S)

∆(π)

JJJJJJJJJ

UUUUUUUUUUUUUUUUUU

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

uuuuuuuuu

S

����������������

(9)

By localization, the different (2, 3, 9) and (3, 3, 9) groups can be seen as
generating the local maximal orders and Eichler orders of level P respectively,
containing Sπ�(∆(π))π (see the vertices and edges of the subtree in Figure 8).

Fig. 8 Subtree T (∆π(π)) and the image of the second dessin under the hyperelliptic
involution J .

To sum up, there are (up to renormalization) four different (3, 3, 9) dessins
on the surface S\H studied here, forming one orbit under the automorphism
group N(S)/S ≃ D3×C2 acting on the edges of the subtree given in Figure 8.
On the other hand one has four (2, 3, 9) dessins equivalent under the automor-
phism group plus one stabilized by N(S)/S, corresponding to the mid–ertex
of the subtree, not isomorphic to the others.
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Remark 5 According to [13] an equation for S\H is y3 = (x− 1)(x3 − 1). We
have found that y2 = x6 + 8x3 + 4 is a hyperelliptic model of this surface.
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