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Abstract

A ZN -curve is one of the form yN = (x− λ1)
m1 . . . (x− λs)

ms . When
N = 2 these curves are called hyperelliptic and for them Thomae proved
his classical formulae linking the theta functions corresponding to their pe-
riod matrices to the branching values λ1, . . . , λs. In his work on Fermionic
fields on ZN -curves with arbitrary N , Bershadsky and Radul discovered
the existence of generalized Thomae’s formulae for these curves which
they wrote down explicitly in the case in which all rotation numbers mi

equal 1. This work was continued by several authors and new Thomae’s
type formulae for ZN -curves with other rotation numbers mi were found.
In this article we prove that for some choices of the rotation numbers the
corresponding ZN -curves do not admit such generalized Thomae’s formu-
lae.
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Notation. Throughout this paper we use the following notation. Given an integer
n ∈ Z we shall denote by n ∈ {0, 1, . . . , p−1} its remainder modulo p. By the floor and
the ceiling of an arbitrary real number x ∈ R to be denoted ⌊x⌋ and ⌈x⌉ respectively we
will refer to the integers ⌊x⌋ = max{z ∈ Z : z ≤ x} and ⌈x⌉ = min{z ∈ Z : z ≥ x}.

1 Introduction

A compact Riemann surface S is called cyclic N-gonal if it possesses an automorphism
τ of order N such that the quotient S/⟨τ⟩ has genus zero in which case the natural

map S → S/⟨τ⟩ ≃ Ĉ provides a degree N morphism that ramifies at the points fixed
by τ . Accordingly, the set of fixed points will be referred to as the ramification (or

branch) locus, and its image in Ĉ as the set of branching values.

This paper was first published in Lett. Math. Phys. 98 (2011), no. 2, 193-205. The final
publication is available at www.springerlink.com
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It is well known (see e.g. [10]) that such a Riemann surface can be seen as as a
ZN -curve, that is S is isomorphic to the Riemann surface of an algebraic curve of the
form

yN = (x− λ1)
m1 . . . (x− λs)

ms (1.1)

where τ can be viewed as the automorphism τ(x, y) = (x, e2πi/Ny) and the set of
branching values is B = {λ1, . . . , λs}.

Let g be the genus of S and let D denote a degree g integral divisor, that is
D = P d1

1 · · ·P dℓ
ℓ with Pi ∈ S, di ≥ 0 and

∑
di = g. Recall that D is said to be

special if there is a non constant function f whose set of poles is bounded by D. The
significance of the special divisors can be explained as follows. Let {ai, bi}gi=1 be a
symplectic basis of H1(S,Z), {ωi}gi=1 the corresponding dual basis of holomorphic 1-
forms, Ω = (

∫
bj

ωi) its period matrix and J(S) = Cg/Zg⊕ZgΩ its jacobian. If we

identify the set of integral divisors of degree g with the g-fold symmetric product S(g)

then, after choosing a base point Q ∈ S, one has a holomorphic map, the Abel-Jacobi
map, from S(g) to J(S) defined by

A(D) =

s∑
i=1

di

∫ Pi

Q

(ω1, . . . , ωg) ∈ J(S)

It is a classical result that this is a surjective birational map which fails to be an
isomorphism precisely at the special divisors.

An alternative interpretation of this fact comes from Riemann’s vanishing theorem.
The Riemann theta function is given by the formula

θ(z,Ω) =
∑
n∈Zg

e2πi( 1
2
nt·Ω·n+n·z)

This a function defined on Cg whose zero set is well defined on J(S). Classically to
each ϵ, δ ∈ Qg one associates the theta characteristic

ϵ+ δ · Ω ∈ Qg ⊕Qg · Ω

and the theta constant

θ

[
ϵ
δ

]
:= e2πi( 1

2
ϵ·Ωϵ+ϵ·δ)θ(ϵ+ δ · Ω,Ω)

Now, there is a constant kQ ∈ J(S), the Riemann’s constant, such that if ϵ+δ ·Ω =

kQ +A(D) with D special then θ

[
ϵ
δ

]
= 0.

We refer to [7] and [13] for background in this subject.
Theta characteristics of the form ϵ+ δ · Ω = kQ +A(D) with D special are called

singular theta characteristics. For a hyperelliptic (or Z2) curve of genus g with equation
y2 = (x − λ1) . . . (x − λ2g+1) Thomae’s formulae (see [15], [16], or [9], [13], [5] for a
modern version) express the values of the theta constants corresponding to the one-half
non singular theta characteristics ϵ+ δ · Ω ∈ 1

2
Zg⊕ 1

2
ZgΩ in terms of the coefficients

λj . It turns out that all such theta characteristics correspond to non-special divisors
D supported on the branch locus.

In his work on Fermionic fields on arbitrary ZN -curves Bershadsky and Radul [3],
building on work by Belavin and Knizhnik [1] and themselves [2], discovered formulae
which generalise Thomae’s formulae in the sense that they express the theta constants
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corresponding to the 1
2N

-th non singular theta characteristics ϵ+ δ ·Ω = kQ +A(D) ∈
1

2N
Zg⊕ 1

2N
ZgΩ, where D is a non-special divisor supported on the branch locus, in

terms of the parameters λj . They succeeded to get an explicit description of them
in the case in which s is a multiple of N and m1 = . . . = ms = 1. Their proof
relies on the path integral formulation of the conformal field theory. Some years later
Nakayashiki [14] provided a proof of these same formulae by means of more classical
mathematical methods. Afterwards Enolski and Grava [6] achieved the same goal for
the case s = 2d and m1 = . . . = md = N − 1, md+1 = . . . = m2d = 1.

It seems to be generally believed that analogous formulae can be found in arbitrary
ZN -curves (see e.g. [3] § 6, [6] § 7 or indeed the erroneous Lemma 2.3 in the first author’s
paper [10], later corrected in [11]).

In this paper we show that this is not the case

Theorem 1. For any set of branching values B = {λ1, . . . , λs} ⊂ Ĉ with s ≥ 3, there
are ZN -curves

yN = (x− λ1)
m1 . . . (x− λs)

ms

with N arbitrary large possessing no non-special integral divisors of degree g supported
on the branch locus.

The proof of this theorem will be a direct consequence of Propositions 1 and 2 in
Section 3, where explicit families of curves satisfying the conclusion above are con-
structed.

Finally, in view of the current activity in the search of Thomae’s formulae (see
e.g. [4], [5], [12], and above all the book [8]), in Section 4 we give complete lists of all
non-special integral divisors (supported on the branch locus) for some ZN -curves with
small values of the degree N and of the number of branching values s.

2 Characterization of non-special integral divi-
sors supported on the branch locus

For the sake of simplicity from now on we shall assume that N = p is a prime number
so that our ZN -curves can be written in the form

yp = (x− λ1)
m1 . . . (x− λr+2)

mr+2 (2.1)

where

•
∑

mi = np, for some positive integer n, and

• 1 ≤ mi ≤ p− 1

• r ≥ 1 since we want the genus to be greater than 1.

In this case our ZN -curves enjoy the following properties

• The associated Riemann surface S consists of the affine points of the curve of
equation 2.1 plus p points at infinity.

• The cyclic group ⟨τ⟩ is generated by the automorphism τ(x, y) = (x, e2πi/py).

• The full fixed point set of τ is Fix(τ) = {Q1 = (λ1, 0), . . . , Qr+2 = (λr+2, 0)}.
The points at infinity get permuted by τ .

• The rotation angle of τ−1 at a fixed point Qk is e2πimk/p (that is, locally
τ−1(z) = e2πimk/p · z).
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• The genus of S is g = p−1
2

r.

It is a trivial fact that if one of the exponents in our degree g divisor D =

Qd1
1 · · ·Qdr+2

r+2 is bigger or equal to p then D is special. Therefore we assume from
the start that 0 ≤ di < p, for all i = 1, . . . , r + 2.

The following obvious inequalities will be used throughout the rest of the paper so
we record them as a separate lemma.

Lemma 1. Let a, b ∈ Z be integers and x ∈ R any real number. Then:

a

b
− 1 <

⌊a
b

⌋
≤ a

b
and

a

b
≤
⌈a
b

⌉
<

a

b
+ 1

where the equalities occur only for a ≡ 0 (mod b), and:

⌊a+ x⌋ = a+ ⌊x⌋ and ⌈a+ x⌉ = a+ ⌈x⌉.

We can now state our criterion to detect when an integral degree g divisor sup-
ported on the branch locus is non-special

Theorem 2. Let S be a compact Riemann surface and τ an automorphism of S of
prime order p such that the quotient S/⟨τ⟩ has genus zero. Let Fix(τ) = {Q1, . . . , Qr+2}
be the fixed point set of τ and let us denote by mk the rotation number of the point
Qk.

Then, for a divisor D of the form D = Qd1
1 · · ·Qdr+2

r+2 with 0 ≤ di ≤ p − 1 and∑
di = g, the following four conditions are equivalent

(i) D is non-special.

(ii)
∑r+2

i=1 di +mik > g , for every k = 1, . . . , p− 1.

(iii)
∑r+2

i=1 di +mik = g + p , for every k = 1, . . . , p− 1.

(iv)
∑r+2

i=1 di +mik = g + p , for p− 2 integers k ∈ {1, . . . , p− 1}.

(v)

(
r+1∑
i=1

⌊
di +mik

p

⌋)
+

⌊
dr+2 − (

∑r+1
j=1 mi)k

p

⌋
= −1 , for all k = 1, ..., p− 1.

Proof. The equivalence between the first four statements was proved in our article
[11]. We now see that (iii) and (v) are equivalent too.

Using the fact that for a, b ∈ N the remainder of a modulo b can be written as
a = a− ⌊a/b⌋ b , we can rewrite point (iii) as:∑

di + k
∑

mi − p
∑⌊

di +mik

p

⌋
= g + p , for every k = 1, . . . , p− 1.

From the equalities
∑

di = g and
∑

mi = np we deduce that

p

(
nk −

r+1∑
i=1

⌊
di +mik

p

⌋
−

⌊
nk +

dr+2 − (
∑r+1

j=1 mi)k

p

⌋)
= p ,
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where we have put the term ⌊(dr+2 +mr+2k)/p⌋ aside and written np −
∑r+1

i=1 mi

instead of mr+2.
Finally the result follows from the second part of Lemma 1.

3 ZN-curves with no non-special divisors

For each fixed number r ≥ 2 we will construct an infinite family of ZN -curves with r+2
ramification points, none of which will contain non-special integral divisors supported
on the branch locus.

Proposition 1. Let r ≥ 2 be an integer and p > 12r a prime. Then the ZN -curve of
equation

yp = (x− λ1) . . . (x− λr)(x− λr+1)
2r(x− λr+2)

p−3r

does not contain non-special integral divisors of degree g supported on the branch locus.

The proof will result as a consequence of two technical lemmas. We start by fixing
some notation.

As above let D = Qd1
1 · · ·Qdr+2

r+2 be an arbitrary divisor supported on the branch
locus with 0 ≤ di ≤ p − 1 and

∑
di = g. For k ∈ {1, . . . , p − 1} we introduce the

following integers

Si
k = Si

k(D) =

⌊
di + k

p

⌋
, i = 1, . . . , r ,

Sr+1
k = Sr+1

k (D) =

⌊
dr+1 + 2rk

p

⌋
,

Sr+2
k = Sr+2

k (D) =

⌊
dr+2 − 3rk

p

⌋
,

We observe that for fixed i = 1, . . . , r + 1 (resp. for i = r + 2) Si
k is an increas-

ing (resp. decreasing) function of k. We also note that the distance between two
consecutive values is at most 1; more precisely

Si
k ≤ Si

k+1 ≤ Si
k+1 + 1, for i = 1, . . . , r + 1;

and
Sr+2
k − 1 ≤ Sr+2

k+1 ≤ Sr+2
k .

Moreover Sr+2
k is the only term that could possibly be negative.

Finally we denote by Sk = Sk(D) the sum of all these values, that is

Sk =

r+2∑
i=1

Si
k =

(
r∑

i=1

⌊
di + k

p

⌋)
+

⌊
dr+1 + 2rk

p

⌋
+

⌊
dr+2 − 3rk

p

⌋
(3.1)

By Theorem 2 to prove Proposition 1 it is enough to see that if p is a prime such
that p ≥ 12r then Sk ̸= −1 for some k ∈ {1, . . . , p− 1}.

Our next lemma detects the integers k ∈ {1, . . . , p − 1} for which the distance
between the consecutive values Si

k and Si
k+1 is exactly 1 in the two cases i = r+1, r+2.
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Lemma 2. Let j and ℓ be integers such that Sr+1
1 ≤ j − 1 < Sr+1

p−1 and Sr+2
p−1 < −ℓ ≤

Sr+2
1 and define

θ1(j) =

⌈
jp− dr+1

2r

⌉
− 1, θ2(ℓ) =

⌊
pℓ+ dr+2

3r

⌋
.

Assume that p > 3r, then

Sr+1
θ1(j)

= j − 1, Sr+1
θ1(j)+1 = j;

Sr+2
θ2(ℓ)

= −ℓ, Sr+2
θ2(ℓ)+1 = −ℓ− 1.

Conversely, if Sr+1
k = j − 1 and Sr+1

k+1 = j (resp. Sr+2
k = −ℓ and Sr+2

k+1 = −ℓ − 1)
then k = θ1(j) (resp. k = θ2(ℓ)).

Proof. Set k = θ1(j). Then by Lemma 1:

jp− dr+1

2r
− 1 ≤ k <

jp− dr+1

2r

So we have the inequalities

jp− 2r ≤ dr+1 + 2rk < jp and jp ≤ dr+1 + 2r(k + 1) < jp+ 2r.

which since p > 2r further implies

j − 1 ≤ Sr+1
k < j and j − 1 ≤ Sr+1

k+1 < j

This yields Sr+1
k = j − 1 and Sr+1

k+1 = j.

Now set k = θ2(ℓ) so that

pℓ+ dr+2

3r
− 1 < k ≤ pℓ+ dr+2

3r

and hence

−pℓ ≤ dr+2 − 3rk < −pℓ+ 3r and − pℓ− 3r ≤ dr+2 − 3r(k + 1) < −pℓ

Since p > 3r this gives Sr+2
k = −ℓ and Sr+2

k+1 = −(ℓ+ 1).

The converse is a consequence of the fact that Sr+1
k (resp. Sr+2

k ) is an increasing
(resp. decreasing) function of k.

In the equation of Proposition 1, the key point in the choice of the (r + 1)-th
rotation number in relation to the r-th one is the following: if Sr+1

k (D) and Sr+2
k (D)

increase and decrease simultaneously for the same k1, then for the next k2 in which
Sr+1
k (D) increases, Sr+2

k (D) remains unchanged. This is the content of the following

Lemma 3. With the notation as in Lemma 2, let j and ℓ be natural numbers such that
θ1(j) = θ2(ℓ). Assume that p > 12r. Then there is no h > 0 satisfying the equality
θ1(j + 1) = θ2(ℓ+ h).
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Proof. From the identities

k1 := θ1(j) =

⌈
jp− dr+1

2r

⌉
− 1 = θ2(ℓ) =

⌊
pℓ+ dr+2

3r

⌋
.

we deduce that there are integers λ1, λ2 such that

jp− dr+1 = (k1 + 1) · 2r − λ1, 0 ≤ λ1 ≤ 2r − 1,
pℓ+ dr+2 = k1 · 3r + λ2, 0 ≤ λ2 ≤ 3r − 1.

(3.2)

Suppose that θ1(j + 1) = θ2(ℓ+ h) for some h > 0, then we can write

k2 := θ1(j + 1) =

⌈
(j + 1)p− dr+1

2r

⌉
− 1 = θ2(ℓ+ h) =

⌊
p(ℓ+ h) + dr+2

3r

⌋
.

Now using (3.2) we get:

0 =

⌊
p(ℓ+ h) + dr+2

3r

⌋
−
⌈
(j + 1)p− dr+1

2r

⌉
+ 1 =

=

⌊
pℓ+ dr+2 + ph

3r

⌋
−
⌈
jp− dr+1 + p

2r

⌉
+ 1 =

=

⌊
k1 +

λ2 + ph

3r

⌋
−
⌈
k1 + 1 +

p− λ1

2r

⌉
+ 1 =

=

⌊
λ2 + ph

3r

⌋
−
⌈
p− λ1

2r

⌉
=

=

⌊
λ2 + ph

3r

⌋
−
⌊
p

2r

⌋
−
⌈
p̃− λ1

2r

⌉
,

where p̃ is the remainder of p modulo 2r and so p =
⌊ p

2r

⌋
2r+ p̃, with 0 ≤ p̃ ≤ 2r− 1.

It follows that ⌊
λ2 + ph

3r

⌋
−
⌊
p

2r

⌋
=

⌈
p̃− λ1

2r

⌉
, for some h.

In order to show that this last equality leads to a contradiction we note that

⌈
p̃− λ1

2r

⌉
can only be 0 or 1.

Now if h = 1 then by Lemma 1 and using the condition on p:⌊
λ2 + p

3r

⌋
−
⌊
p

2r

⌋
<

λ2 + p

3r
− p

2r
+ 1 =

2λ2 + 2p− 3p

6r
+ 1 <

<
−p

6r
+ 2 < 0.

On the other hand if h ≥ 2:⌊
λ2 + hp

3r

⌋
−
⌊
p

2r

⌋
>

⌊
λ2 + 2p

3r

⌋
−
⌊
p

2r

⌋
>

>
λ2 + 2p

3r
− 1− p

2r
=

2λ2 + 4p− 3p

6r
− 1 >

>
p

6r
− 1 > 1.
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So, in any case we get a contradiction.

We are now in position to provide the

of Proposition 1. We have to show that for some k = 1, . . . , p−1 the sum Sk = Sk(D)
defined in (3.1) is different from −1.

Since by definition Si
k ≥ 0 for i ≤ r + 1 and, by our hypothesis on p, Sr+2

k ≥ −1,
we can assume that Sr+2

1 (D) = −1 and that Si
1(D) = 0 , for i = 1, . . . , r + 1 , since

otherwise the sum Sk(D) would be different from −1 already for k = 1.
In particular Sr+1

1 = 0, and since r ≥ 2 we have:

Sr+1
p−1 =

⌊
2r(p− 1) + dr+1

p

⌋
≥
⌊
4p− 4 + dr+1

p

⌋
> 1

Hence we can define the indexes k1 := θ1(1) and k2 := θ1(2) as in Lemma 2. For the
first one we have that Sr+1

k1
(D) = 0 and Sr+1

k1+1(D) = 1. As we are assuming that D is
non-special the following identity holds

Sk1(D) =

r∑
i=1

Si
k1
(D) + Sr+1

k1
(D) + Sr+2

k1
(D) = ξ1 + Sr+2

k1
(D) = −1,

where ξ1 =
∑r

i=1 S
i
k1
(D), and so Sr+2

k1
(D) = −(ξ1 + 1).

But then for k1 + 1 we have:

Sk1+1(D) = ξ′1 + 1 + Sr+2
k1+1(D) = −1,

hence Sr+2
k1+1(D) = −(ξ′1 + 2). Now, since ξ′1 =

∑r
i=1 S

i
k1+1(D) ≥ ξ1 and the integers

Sr+2
k1

, Sr+2
k1+1 differ by at most a unity it follows that ξ′1 = ξ1 and Sr+2

k1+1(D) = Sr+2
k1

(D)−
1. By Lemma 2 the index k1 must be of the form k1 = θ2(ℓ) for some ℓ (in fact for
ℓ = ξ1 + 1).

As for k2 we have Sr+1
k2

(D) = 1 and Sr+1
k2+1(D) = 2 and so:

Sk2(D) =

r∑
i=1

Si
k2
(D) + Sr+1

k2
(D) + Sr+2

k2
(D) = ξ2 + 1 + Sr+2

k2
(D) = −1,

where ξ2 =
∑r

i=1 S
i
k2
(D). Then Sr+2

k2
(D) = −(ξ2 + 2). We have as well:

Sk2+1(D) = ξ′2 + 2 + Sr+2
k2+1(D) = −1,

so Sr+2
k2+1(D) = −(ξ′2 +3). As above we conclude that ξ′2 = ξ2, hence k2 must be of the

form k2 = θ2(ℓ+ h) for some h > 0.
So k1 = θ1(1) = θ2(ℓ) and k2 = θ1(2) = θ2(ℓ+ h). But this yields a contradiction

with Lemma 3.

In fact with little changes in the previous proofs, we can find a stronger result,
which in addition is also valid for curves with only 3 ramification values:
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Proposition 2. Let r ≥ 1 be an integer and p a prime. Let S be the ZN -curve of
equation

yp = (x− λ1)
m1 . . . (x− λr)

mr (x− λr+1)
m(x− λr+2)

p−m−M ,

where set M =
∑r

i=1 mi and m = mr+1 .
Suppose that the following conditions are satisfied:

(i) m > M and m ≥ 3;

(ii) p > max

{
2m(m+M)

M
,
2m(m+M)

m−M

}
.

Then S does not contain non-special integral divisors of degree g supported on the
branch locus.

Proof. The proof of the previous proposition can be mimicked until the last part. In
fact the conditions on m ensure that

Sr+1
p−1 ≡

⌊
m(p− 1) + dr+1

p

⌋
≥
⌊
3p− 3 + dr+1

p

⌋
> 1

so the indexes k1 and k2 can be defined as in Proposition 1.
Finally one gets the following equality (similar to the one in Lemma 3):⌊

λ2 + ph

m+M

⌋
−
⌊
p

m

⌋
=

⌈
p̃− λ1

m

⌉
, for some h,

where 0 ≤ p̃, λ1 ≤ m− 1 and 0 ≤ λ2 ≤ m+M − 1. Once again the right hand of the
equality is either 0 or 1, and for h = 1 we get:⌊

λ2 + p

m+M

⌋
−
⌊
p

m

⌋
<

λ2 + p

m+M
− p

m
+ 1 =

mλ2 +mp− (m+M)p

m(m+M)
+ 1 <

<
−Mp

m(m+M)
+ 2 < 0, if p >

2m(m+M)

M
,

whereas for h = 2:⌊
λ2 + 2p

m+M

⌋
−
⌊
p

m

⌋
>

λ2 + 2p

m+M
− 1− p

m
=

mλ2 + 2mp− (m+M)p

m(m+M)
− 1 >

>
m−M

m(m+M)
p− 1 > 1, if p >

2m(m+M)

m−M
.

Taking p bigger than the maximum of the two bounds, we get the result. Note
that we need the m−M > 0 condition in the last inequality.
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4 Non-special divisors of ZN-curves for some small
values of N and s

In this section we give complete lists of all non-special integral divisors supported on
the branch locus for some ZN -curves with small values of the degree N and of the
number of branching values s.

The list has been obtained by checking Theorem 2 by computer means.
Remember that the branch locus of a ZN -curve of the form

yp = (x− λ1)
m1 . . . (x− λs)

ms

is the set {Qi = (λi, 0) : i = 1, . . . , s}.

Example 1. (Trigonal curves with s = 4)
Any trigonal curve with 4 ramification values can be written as

y3 = (x− λ1)(x− λ2)(x− λ3)
2(x− λ4)

2

The list of all non-special integral divisors supported on the branch locus is

D = { Q2
i , Q2

j , QiQj : i = 1, 2; j = 3, 4 }

Example 2. (Trigonal curves with s = 5)
There is only one kind of trigonal curve with 5 ramification values

y3 = (x− λ1)(x− λ2)(x− λ3)(x− λ4)(x− λ5)
2

The list of all non-special integral divisors supported on the branch locus is

D = { QiQ
2
j , QiQ

2
5, QiQjQ5 : i, j = 1, 2, 3, 4; i ̸= j }

Example 3. (ZN -curves for N = 5 and s = 4)
There are three different kinds of ZN -curves for N = 5 with 4 ramification values

• y5 = (x− λ1)(x− λ2)(x− λ3)(x− λ4)
2

The list of all non-special integral divisors supported on the branch locus is:

D = { Q2
iQ

2
4, QiQ

3
j , Q2

iQjQ4 : i, j = 1, 2, 3; i ̸= j }

• y5 = (x− λ1)(x− λ2)(x− λ3)
4(x− λ4)

4

The list of all non-special integral divisors supported on the branch locus is:

D = { Q4
i , Q4

j , Q3
iQj , QiQ

3
j , Q2

iQ
2
j : i = 1, 2; j = 3, 4 }

• y5 = (x− λ1)(x− λ2)
2(x− λ3)

3(x− λ4)
4

The list of all non-special integral divisors supported on the branch locus is:

D = { Q4
1, Q4

2, Q4
3, Q4

4, Q1Q
3
4, Q3

1Q4, Q2Q
3
3, Q3

2Q3, Q2
1Q

2
4, Q2

2Q
2
3,

Q1Q2Q
2
3, Q1Q3Q

2
4, Q2

1Q2Q4, Q2
2Q3Q4, Q1Q2Q3Q4 }
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Example 4. (ZN -curves for N = 5 and s = 5)
There are three different kinds of ZN -curves for N = 5 with 5 ramification values

• y5 = (x− λ1)(x− λ2)(x− λ3)(x− λ4)(x− λ5)
The list of all non-special integral divisors supported on the branch locus is:

D = { QiQ
2
jQ

3
k : i, j, k = 1, 2, 3, 4, 5; i ̸= j, i ̸= k, j ̸= k }

• y5 = (x− λ1)(x− λ2)(x− λ3)(x− λ4)
3(x− λ5)

4

The list of all non-special integral divisors supported on the branch locus is:

D = { Q2
iQ

4
j , Q2

iQ
4
4, Q2

iQ
4
5, QiQjQ4Q

3
5, QiQ

2
jQ4Q

2
5, QiQ

2
jQ

3
5,

QiQ
3
jQ4, QiQ

3
jQ

2
4, QiQ

4
jQ4, QiQ4Q

4
5, Q2

iQ
2
jQ

2
5, Q2

iQ
3
jQ5,

Q3
iQ

3
4 : i, j = 1, 2, 3; i ̸= j }

• y5 = (x− λ1)(x− λ2)(x− λ3)
2(x− λ4)

2(x− λ5)
4

The list of all non-special integral divisors supported on the branch locus is:

D = { Q2
j1Q

4
5, Q2

j1Q
4
i1 , Q2

j1Q
4
j2 , Q3

i1Q
3
j1 , Qi1Qj1Q

4
5, Qi1Q

2
j1Q

3
5,

Q2
i1Q

2
j1Q

2
5, Q3

i1Q
3
j1Q5, Qi1Qj1Q

4
j2 , Q2

i1Qj1Q
3
j2 , Qi1Q

3
i2Q

2
5,

Q2
i1Qj1Q

2
j2Q5, Qi1Qi2Qj1Q

3
5, Qi1Q

2
i2Qj1Q

2
5, Qi1Q

3
i2Qj1Q5,

Qi1Q
2
i2Qj1Qj2Q5 : i1, i2 = 1, 2; j1, j2 = 3, 4; i1 ̸= i2, j1 ̸= j2 }

We observe that the condition on p in Proposition 1 is essential. Next we give the
list of non-special integral divisors supported on their branch locus of some curves of
the same type as those considered there, namely

yp = (x− λ1) . . . (x− λr)(x− λr+1)
2r(x− λr+2)

p−3r, 3r < p ≤ 12r,

• For r = 2:

1. y7 = (x− a1)(x− a2)(x− a3)
4(x− a4)

1

D = { QiQ
3
jQ

2
3, QiQ

3
jQ

2
3, QiQ

4
jQ3, Q2

iQ
4
j :

i, j = 1, 2, 4; i ̸= j }

2. y11 = (x− a1)(x− a2)(x− a3)
4(x− a4)

5

D = { QiQ
4
jQ

2
3Q

3
4, QiQ

5
jQ

2
3Q

2
4, QiQ

6
jQ

1
3Q

2
4, QiQ

7
jQ3Q4 :

i, j = 1, 2; i ̸= j }

3. y13 = (x− a1)(x− a2)(x− a3)
4(x− a4)

7

D = { Q1
1Q

5
2Q

2
3Q

4
4, Q1

1Q
8
2Q

1
3Q

2
4, Q5

1Q
1
2Q

2
3Q

4
4, Q8

1Q
1
2Q

1
3Q

2
4 }

• For r = 3:
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1. y11 = (x− a1)(x− a2)(x− a3)(x− a4)
6(x− a5)

2

D = { QiQ
3
jQ

8
kQ

3
4, QiQ

3
jQ

8
kQ

2
4Q5, QiQ

3
jQ

7
kQ

4
4, Q2

iQ
4
jQ

8
kQ5,

QiQ
4
jQ

8
kQ4Q5, QiQ

5
jQ

3
4Q

6
5, QiQ

6
jQ

2
4Q

6
5, Q3

iQ
5
jQ

4
4Q

3
5,

Q3
iQ

8
jQ

2
4Q

2
5, Q4

iQ
8
jQ4Q

2
5, Q4

iQ
6
jQ

5
5 : i, j, k = 1, 2, 3;

i ̸= j, i ̸= k, j ̸= k }

2. y13 = (x− a1)(x− a2)(x− a3)(x− a4)
6(x− a5)

4

D = { QiQ
4
jQ

8
kQ

4
4Q5, QiQ

5
jQ

8
kQ

2
2Q

2
5, QiQ

5
jQ

8
kQ

3
4Q5,

QiQ
5
jQ

9
kQ4Q

2
5 : i, j, k = 1, 2, 3; i ̸= j, i ̸= k, j ̸= k }
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