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Resumen y conclusiones

Una superficie de Riemann es una variedad de dimensión 2 en la que los cam-
bios de cartas son funciones holomorfas entre abiertos del plano complejo. Las
superficies de Riemann son siempre orientables, y por lo tanto las compactas están
caracterizadas topológicamente por su género. Las superficies de Riemann com-
pactas se pueden ver también como curvas algebraicas lisas sobre los complejos, y
por lo tanto se puede definir una acción del grupo de Galois Gal(C/Q) sobre el con-
junto de las superficies de Riemann compactas mediante la acción de los elementos
de Galois en los polinomios con coeficientes complejos.

Otra forma de estudiar superficies de Riemann es desde el punto de vista de la
uniformización. Por la teoŕıa de espacios recubridores toda superficie de Riemann es
el cociente de una superficie simplemente conexa, llamada recubridor universal, por
la acción libre de un subgrupo del grupo de automorfismos de este recubridor. El
teorema de uniformización nos asegura que toda superficie de Riemann simplemente
conexa es isomorfa al plano, a la esfera o al disco unitario, y por lo tanto estos son
los únicos posibles recubridores universales.

Si el género de una superficie compacta es mayor o igual que 2, el recubridor
universal es necesariamente el disco, cuyo grupo de automorfismos es isomorfo a
PSL(2,R). Una de las principales caracteŕısticas de este grupo de automorfismos es
que coincide con el grupo de isometŕıas del disco con la métrica hiperbólica, y por
lo tanto cualquier superficie de Riemann de género mayor o igual que dos hereda
de forma natural una métrica hiperbólica. Los subgrupos de PSL(2,R) que definen
una superficie de Riemann en el cociente no tienen porqué actuar libremente, basta
con que actúen de manera propiamente discontinua. A tales grupos se les llama
grupos Fuchsianos.

Entre los grupos Fuchsianos, una familia importante es la de los grupos tri-
angulares, que son grupos generados por giros alrededor de los tres vértices de un
triángulo hiperbólico y que definen en el cociente una superficie de Riemann de
género 0 con tres puntos marcados. Los grupos triangulares están estrechamente
relacionados tanto con los dessins d’enfants como con las superficies de Beauville,
que son los objetos principales de estudio de esta memoria.

Un dessin d’enfant es un grafo finito bicoloreado en una superficie topológica
compacta y orientable cuyo complementario es unión finita de discos topológicos.
Todo dessin dota a la superficie topológica en la que está inmerso de una estruc-
tura de superficie de Riemann. Es más, por el teorema de Belyi–Grothendieck
esa superficie corresponde a una curva algebraica con coeficientes en el cuerpo de
números algebraicos Q, y a la inversa, a toda curva con coeficientes algebraicos le
corresponde al menos un dessin.

Por otro lado, una superficie de Beauville es una superficie compleja (variedad
de dimensión real 4) isomorfa al cociente del producto de dos superficies de Riemann
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iv RESUMEN Y CONCLUSIONES

compactas por cierta acción libre de un grupo finito que actúa por isomorfismos. A
esta acción se le pide, adicionalmente, que restrinja a cada una de las dos superficies
de Riemann definiendo en el cociente una superficie de género 0 con tres puntos
marcados. La relevancia de estas superficies viene principalmente del hecho de que
son ŕıgidas, es decir que no admiten deformaciones no triviales.

Aparte del caṕıtulo de preliminares, en el que se exponen los conceptos nece-
sarios para poder desarrollar los caṕıtulos siguientes, el resto del texto se puede
dividir en tres partes claramente diferenciadas.

En el caṕıtulo 1 se definen los grupos triangulares, que están en la base de la
mayoŕıa de los conceptos que se introducen en los caṕıtulos 2 y 3, y se describen
sus propiedades. En particular demostramos con métodos elementales de geometŕıa
hiperbólica el conocido hecho que todo isomorfismo de grupos de un grupo trian-
gular está inducido por una isometŕıa del plano hiperbólico (Corolario 1.1). Es-
tudiamos la relación entre grupos triangulares, dessins d’enfants y curvas trian-
gulares (o cuasiplatónicas) y describimos la acción del grupo de Galois absoluto
en G−cubrimientos triangulares desde el punto de vista de las tripletas que los
definen (Proposición 1.3), formalizando un método de M. Streit. Como consecuen-
cia demostramos el resultado ya conocido de que los G−cubrimientos triangulares
abelianos están definidos sobre Q (Corolario 1.2). Finalmente, caracterizamos to-
dos los cubrimientos triangulares con grupo PSL(2, p) y tipos (p, p, p) y (2, 3, n)
(Teoremas 1.2 y 1.3) y los cubrimientos triangulares con grupo PSL(2, 7) y tipo
(3, 3, 4) (Teorema 1.4).

En el caṕıtulo 2 se estudia la existencia de múltiples dessins uniformes del
mismo tipo en una superficie de Riemann. En el caso no aritmético el resultado es
inmediato (Teorema 2.1). En el caso en el que el grupo que uniformiza la superficie
es aritmético, mediante el estudio de órdenes maximales en álgebras de cuater-
niones encontramos una condición necesaria y suficiente para que una superficie de
Riemann contenga varios dessins uniformes (Teorema 2.3). También exponemos
varios ejemplos de superficies de Riemann bien conocidas en las que, por los resul-
tados anteriores, demostramos que viven varios dessins uniformes del mismo tipo
(sección 2.4). Por último explicamos otro método para encontrar múltiples dessins
uniformes en la misma superficie, que lleva a la caracterización de dessins uniformes
unicelulares en género 2 (Teorema 2.5).

En el caṕıtulo 3 se introduce el concepto de superficie de Beauville y se enu-
meran las propiedades de estas superficies complejas. En las primeras secciones se
presenta la teoŕıa de estas superficies desde el punto de vista de la uniformización,
exponiendo resultados de Catanese desde otra perspectiva (secciones 3.1 y 3.2).
En estas secciones también se incluyen resultados nuevos, como restricciones a
los géneros que pueden tener las curvas que definen la superficie de Beauville
(Proposición 3.1 y Teorema 3.1 en el caso no mixto, y Corolario 3.4 en el caso
mixto) o consideraciones sobre el grupo de automorfismos de una superficie de
Beauville (Teorema 3.2 en el caso no mixto y Teorema 3.3 en el caso mixto). En
la sección 3.3 se demuestran resultados equivalentes a los teoremas de rigidez de
superficies de Beauville de Catanese desde el punto de vista de grupos Fuchsianos
(Teorema 3.4). Finalmente construimos varios ejemplos de superficies de Beauville
no homeomorfas que son conjugadas Galois: primero el ejemplo con género mı́nimo
y grupo de Beauville PSL(2, 7) (Teorema 3.6 y Corolario 3.7) y después una familia
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infinita de superficies de Beauville con grupo de Beauville PSL(2, p) (Teoremas 3.7
y 3.8).

Los resultados principales de esta memoria pueden encontrarse en los siguientes
art́ıculos:

• E. Girondo, D. Torres-Teigell: Genus 2 Bely̆ı surfaces with a unicellular
uniform dessin, Geom. Dedicata 155 (2011), 81–103.
• E. Girondo, D. Torres-Teigell, J. Wolfart: Shimura curves with many uni-
form dessins, Math. Z. (2011), doi:10.1007/s00209-011-0889-4.
• G. González-Diez, D. Torres-Teigell: An introduction to Beauville surfaces
via uniformization, en “QuasiconformalMappings, Riemann Surfaces, and
Teichmüller Spaces”, Contemp. Math. (2012), pendiente de publicación.
• G. González-Diez, D. Torres-Teigell: Non-homeomorphic Galois conjugate
Beauville structures on PSL(2, p), Adv. Math. (2012), doi:10.1016/j.aim.
2012.02.014.

Los siguientes art́ıculos también incluyen resultados relacionados con los con-
tenidos de la memoria:

• G. González-Diez, G. A. Jones, D. Torres-Teigell: Beauville surfaces with
abelian Beauville group, arXiv:1102.4552v1.
• G. González-Diez, G. A. Jones, D. Torres-Teigell: Arbitrarily large Galois
orbits of non-homeomorphic surfaces, arXiv:1110.4930.





Summary and results

A Riemann surface is a manifold of dimension 2 for which the transition func-
tions are holomorphic functions between open sets of the complex plane. Riemann
surfaces are always orientable, and therefore the compact ones are topologically
characterized by their genus. Compact Riemann surfaces can also be seen as smooth
algebraic curves over the complex field, hence one can define an action of the Galois
group Gal(C/Q) on the set of compact Riemann surfaces through the action of the
Galois elements on the polynomials with complex coefficients.

One can also study Riemann surfaces from the point of view of uniformisa-
tion. By covering space theory every Riemann surface is the quotient of a simply
connected surface, called the universal cover, by the free action of a subgroup of
the group of automorphisms of this cover. The Theorem of Uniformisation ensures
that every simply connected Riemann surface is isomorphic either to the plane, the
sphere or the unit disc, and therefore these are the only possible universal covers.

If the genus of a compact Riemann surface is greater than or equal to 2, the
universal cover is necessarily the disc, whose group of automorphisms is isomorphic
to PSL(2,R). One of the main properties of this group of automorphisms is the
fact that it agrees with the group of isometries of the disc with the hyperbolic
metric, and therefore every Riemann surface of genus greater than or equal to two
inherits a hyperbolic metric in a natural way. The subgroups of PSL(2,R) defining
a Riemann surface in the quotient do not necessarily act freely, it is enough that
they act properly discontinuously. Such groups are called Fuchsian groups.

Among Fuchsian groups, an important family is that of triangle groups, which
are groups generated by rotations around the three vertices of a hyperbolic triangle
and which define in the quotient a Riemann surface of genus 0 with three marked
points. Triangle groups are closely related to both dessins d’enfants and Beauville
surfaces, which are the principal objects of study of this thesis.

A dessin d’enfant is a finite bipartite graph on a compact orientable topological
surface whose complement is a finite union of topological discs. Every dessin endows
the topological surface in which it is embedded with a Riemann surface structure.
Moreover, by the theorem of Belyi–Grothendieck, this Riemann surface corresponds
to an algebraic curve with coefficients in the field Q of algebraic numbers, and
conversely, to every curve with algebraic coefficients one can associate at least one
dessin.

On the other hand, a Beauville surface is a complex surface (real dimension 4)
isomorphic to the quotient of the product of two compact Riemann surfaces by a
certain free action of a finite group which acts by isomorphisms. This action must
restrict to each of the two Riemann surfaces, defining in the quotient a surface of
genus 0 with three marked points. The importance of these surfaces comes mainly
from the fact that they are rigid, that is they do not admit non-trivial deformation.
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viii SUMMARY AND RESULTS

Apart from the preliminaries chapter, in which the concepts necessary to de-
velop the following chapters are presented, the rest of the text can be divided into
three parts.

In Chapter 1 we define the triangle groups, which are at the core of the concepts
which are introduced in Chapters 2 and 3, and we describe their properties. In
particular we prove with elementary methods of hyperbolic geometry the well-
known fact that every group isomorphism between triangle groups is induced by an
isometry of the hyperbolic plane (Corollary 1.1). We study the relation between
triangle groups, dessins d’enfants and triangle curves (or quasiplatonic curves) and
describe the action of the absolute Galois group on triangle G−coverings from
the point of view of their defining triples (Proposition 1.3), formalising a method
by M. Streit. As a consequence we prove the already known fact that abelian
triangleG−coverings can be defined over Q (Corollary 1.2). Finally, we characterize
all the triangle coverings with group PSL(2, p) and of types (p, p, p) and (2, 3, n)
(Theorems 1.2 and 1.3) and the triangle coverings with group PSL(2, 7) and of type
(3, 3, 4) (Theorem 1.4).

In Chapter 2 we study the existence of multiple uniform dessins of the same
type on a Riemann surface. In the non-arithmetic case the result is immediate (The-
orem 2.1). In the case in which the group uniformising the surface is arithmetic,
through the study of maximal orders in quaternion algebras we find a necessary
and sufficient condition for a Riemann surface to contain different uniform dessins
(Theorem 2.3). We also show several examples of well-known Riemann surfaces
in which we prove, using the previous results, that different uniform dessins of the
same type live (Section 2.4). Lastly we explain another method to find multiple uni-
form dessins on the same surface, which leads to the characterization of unicellular
uniform dessins in genus 2 (Theorem 2.5).

In Chapter 3 we introduce the concept of a Beauville surface and enumerate
the properties of these complex surfaces. In the first sections we present the the-
ory of these surfaces from the point of view of uniformisation, proving results of
Catanese from another perspective (Sections 3.1 and 3.2). In these sections there
are also some new results, for example, restrictions to the genera that the curves
defining a Beauville surface can have (Proposition 3.1 and Theorem 3.1 in the
unmixed case, and Corollary 3.4 in the mixed case) or considerations about the
the groups of automorphisms of a Beauville surface (Theorem 3.2 in the unmixed
case and Theorem 3.3 in the mixed case). In Section 3.3 we prove results equiva-
lent to Catanese’s rigidity theorems for Beauville surfaces from the point of view
of Fuchsian groups (Theorem 3.4). Finally, we construct several examples of non-
homeomorphic Beauville surfaces which are Galois conjugate: first the example with
minimum genera and Beauville group PSL(2, 7) (Theorem 3.6 and Corollary 3.7)
and then an infinite family of Beauville surfaces with Beauville group PSL(2, p)
(Theorems 3.7 and 3.8).

The main results of this thesis can be found in the following papers:

• E. Girondo, D. Torres-Teigell: Genus 2 Bely̆ı surfaces with a unicellular
uniform dessin, Geom. Dedicata 155 (2011), 81–103.
• E. Girondo, D. Torres-Teigell, J. Wolfart: Shimura curves with many uni-
form dessins, Math. Z. (2011), doi:10.1007/s00209-011-0889-4.
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• G. González-Diez, D. Torres-Teigell: An introduction to Beauville surfaces
via uniformization, in “Quasiconformal Mappings, Riemann Surfaces, and
Teichmüller Spaces”, Contemp. Math. (2012), in press.
• G. González-Diez, D. Torres-Teigell: Non-homeomorphic Galois conjugate
Beauville structures on PSL(2, p), Adv. Math. (2012), doi:10.1016/j.aim.
2012.02.014.

The following papers also include results related to the contents of this thesis:

• G. González-Diez, G. A. Jones, D. Torres-Teigell: Beauville surfaces with
abelian Beauville group, arXiv:1102.4552v1.
• G. González-Diez, G. A. Jones, D. Torres-Teigell: Arbitrarily large Galois
orbits of non-homeomorphic surfaces, arXiv:1110.4930.
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que tendré más adelante.

Las primeras personas que merecen aparecer en estos agradecimientos son
Ernesto y Gabino. Al margen de la obviedad de que me han enseñado (casi) todo lo
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Preliminaries

In this chapter we introduce many basic notions which will be used later in the
rest of the chapters. Its content is mostly well known and the results are stated
without proof.

In section 0.1 we give an introduction to Riemann surfaces. Although there is
a huge amount of literature on this subject, perhaps the most suitable references
are [54, 22].

In sections 0.2 and 0.3 we present two important parts of the theory of com-
pact Riemann surfaces: Galois actions on algebraic curves and covering theory of
Riemann surfaces. For our point of view the most appropriate reference is proba-
bly [32].

Sections 0.4 and 0.5 deal with Fuchsian groups, their fundamental domains
and their relation with hyperbolic geometry. Most of what is presented here can
be found in [10, 48].

In section 0.6 we present the Grothendieck–Belyi theory of dessins d’enfants
and Belyi functions. We refer the reader to [32] for a comprehensive and more
formal exposition (see also [56]).

Finally, in sections 0.7 and 0.8 we introduce some notions from the theory of
quaternion algebras. For an exhaustive introduction to this subject see for exam-
ple [65, 51] (see also [50, 49]).

0.1. Riemann surfaces

A Riemann surface is a topological surface with a complex structure, i.e. with
an atlas {(Ui, ϕi)} such that the transition functions ϕi ◦ ϕ−1

j are holomorphic
functions between open sets of the complex plane C. By the Cauchy–Riemann
equations, every Riemann surface is orientable, and therefore the compact ones are
topologically characterized by their genus.

The most basic examples of Riemann surfaces are open sets of the complex
plane U ⊂ C with the identity atlas {(U, Id)}. In particular one has the complex
plane C, the upper half-plane H = {w ∈ C : Im(w) > 0} and the unit disc
D = {w ∈ C : |w| < 1}. Other surfaces that can be given a Riemann surface
structure are the unit sphere S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}, the complex

extended plane (or Riemann sphere) Ĉ = C∪ {∞} and the complex projective line
P1 := P1(C).

It is because of the complex structure that one can define in a natural way holo-
morphic and meromorphic functions on Riemann surfaces and morphisms between

them. The following Riemann surfaces are isomorphic: H ∼= D and S2 ∼= Ĉ ∼= P1. In
fact, these two are, together with the complex plane C the only simply connected
Riemann surfaces.

1



2 PRELIMINARIES

Theorem (Uniformisation theorem). Any simply connected Riemann surface

is isomorphic to D, C or Ĉ.

It is a classical fact that there exists a bijection between isomorphism classes
of compact Riemann surfaces and isomorphism classes of non-singular projective
algebraic curves over the complex field. We will therefore use interchangeably the
terms Riemann surface and algebraic curve.

Let now f : S −→ C be a meromorphic function on the Riemann surface S and
let P ∈ S be a zero or a pole of f . We define the order of f in P as the order of the
local expression f ◦ ϕ−1 in ϕ(P ) and it is denoted by ordP (f). If f : S −→ S′ is a
morphism and we choose a local expression of f such that (ψ ◦ f ◦ϕ−1)(ϕ(P )) = 0,
the multiplicity of f in P is defined as mP (f) := ordϕ(P )(ψ ◦f ◦ϕ−1). If mP (f) ≥ 2
we say that P is a ramification point and that f(P ) is a ramification value of f .
For any non-constant morphism f : S −→ S′ of compact Riemann surfaces we can
define the degree of f as deg(f) :=

∑
f(p)=ymp(f), which does not depend on the

choice of y ∈ S′. Given a morphism f , the genera g(S) and g(S′) of S and S′ are
related by the Riemann–Hurwitz formula:

2g(S)− 2 = deg(f)(2g(S′)− 2) +
∑

p∈S
(mp(f)− 1) .

As for automorphisms of compact Riemann surfaces, i.e. isomorphisms of S
onto itself, there is a bound to the order of the automorphism group Aut(S) of
S in terms of its genus g(S). This bound, called Hurwitz bound, states that for
g(S) ≥ 2 one has |Aut(S)| ≤ 84(g(S)− 1). The Riemann surfaces achieving it are
called Hurwitz curves, and any finite groupG which occurs as the full automorphism
group of one of these surfaces is called a Hurwitz group.

0.2. Action of the Galois group

The Galois group Gal(C) := Gal(C/Q) acts naturally on complex algebraic
varieties in the following way. Let first S = {[x, y, z] ∈ P2(C) : F (x, y, z) = 0}
be a projective algebraic curve given as the zeroes of a homogeneous polynomial
F ∈ C[X,Y, Z]. If σ ∈ Gal(C) is a field automorphism of C one can construct the
Galois conjugate curve SσF = SFσ , where F σ is obtained from F by applying σ to its
coefficients. We can proceed in the same way in higher dimension (or if the model
for the curve S is not plane), so that if V = {Fα = 0} is an algebraic variety defined
as the set of zeroes of a finite collection of polynomials {Fα} ⊂ C[X1, . . . , Xn], the
Galois conjugate variety is defined as the set of zeroes V σ = {F σα = 0}.

Let now S be a compact Riemann surface and k ⊆ C a field. We say that k is a
field of definition of S if there exists a finite collection of homogenous polynomials
F ⊂ k[X1, . . . , Xn] such that S and SF = {[x1, . . . , xn] ∈ Pn−1(C) : Q(x1, . . . , xn) =
0, for all Q ∈ F} are isomorphic. On the other hand if we define the inertia group

IS = {σ ∈ Gal(C) : SσF
∼= SF },

which clearly does not depend on the algebraic model of S, then the fixed field

CIS = Fix(IS) = {α ∈ C : σ(α) = α, for all σ ∈ IS}
is called the field of moduli of S, and it is denoted by M(S). In particular the
index of IS in Gal(C) agrees with the cardinality of the orbit of S under the action
of Gal(C). The field of moduli of a Riemann surface is always contained in any
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field of definition, but the converse is not true in general, as shown by well-known
counterexamples ([20, 59]). The concepts of field of definition and field of moduli
of a complex algebraic variety V of arbitrary dimension can be defined in the same
way.

Let us consider now an automorphism τ ∈ Aut(S) of order r, and let P ∈ S
be a fixed point of τ . If ψ is a local parameter around P such that ψ(P ) = 0, then
locally

ψ ◦ τ ◦ ψ−1(w) = ζkrw, where ζr = e2πi/r and k ∈ Z .

Since ζkr = (ψ ◦ τ ◦ ψ−1)′(0), it is clear that this root of unity does not depend on
the local chart ψ chosen. We say then that τ rotates with angle 2πk/r in P , and
that ζkr (or simply k) is the rotation number of τ in P . Let us note that the rotation
number k is defined modulo r.

The relevance of rotation numbers lies in the fact that if τ : S −→ S is a finite
order automorphism of S fixing a point P with rotation angle ζ and σ is a field
automorphism of C (or any other field of definition of S and τ), then τσ : Sσ −→ Sσ

is a finite order automorphism fixing P σ with rotation angle σ(ζ). The reason
for this relation is the following: let τ∗ : H0(S,Ω) −→ H0(S,Ω) be the C−linear
automorphism induced by τ in the space of regular 1−forms and ω be an eigenvector
with eigenvalue λ such that ω(P ) 6= 0. Such holomorphic 1−form must exist
because on the one hand τ∗ admits a diagonal basis and on the other hand, by the
Riemann–Roch theorem, not all holomorphic 1−forms vanish simultaneously at a
point P . Therefore in terms of a local coordinate around P we can write

τ(w) = ζw ;

ω = (a0 + a1w + a2w
2 + . . .)dw , a0 6= 0; and

λω = τ∗ω = (a0 + a1ζw + a2ζ
2w2 + . . .)ζdw.

One concludes that the rotation number ζ equals the eigenvalue λ – an algebraically
defined object – and so σ(λ) = σ(ζ), which clearly is the eigenvalue corresponding
to the eigenvector ωσ of (τσ)∗, must be the rotation number of the automorphism
τσ at the point P σ ∈ Sσ.

0.3. Uniformisation and universal coverings

The general theory of covering spaces tells us that any topological manifold X

admits a simply connected universal covering X̃ . Furthermore, if X has a complex
structure the universal cover can be endowed with a complex structure such that

the projection X̃ −→ X is a morphism.
In the particular case of surfaces, this theory ensures that any Riemann surface

S can be written as the quotient S = S̃/G of a simply connected Riemann surface

S̃ by the free action of a subgroup G of the group of automorphisms Aut(S̃),
which is moreover isomorphic to the fundamental group π1(S). In this case, the
situation is quite easy since by the uniformisation theorem the universal covering
of any Riemann surface S must be isomorphic either to D, C or P1(C). Now the
only Riemann surface having P1(C) as universal cover is precisely P1(C), since
any automorphism of P1(C) has fixed points. As for the complex plane, one has
Aut(C) ∼= {z 7−→ az+ b : a, b ∈ C} and any subgroup G < Aut(C) which does not
fix points is a group of translations, therefore abelian; hence no compact Riemann
surface of genus greater than or equal to two can have C as universal covering,
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since its fundamental group is not abelian. As a first consequence, it becomes
particularly important the group of automorphisms of the disc, since almost every
compact Riemann surface will be uniformised by a torsion-free subgroup of it.

The groups of automorphisms of H and D are isomorphic to PSL(2,R) and
they can be identified with

Aut(H) =

{
w 7−→ aw+ b

cw+ d
: a, b, c, d ∈ R, ad− bc 6= 0

}
and

Aut(D) =

{
w 7−→ eiθ

w − α
1− αw : α ∈ D, θ ∈ R

}
.

This fact can be generalised to higher dimensions. The following result follows
from a theorem of Cartan ([36], see also [55]):

Proposition 0.1. Let f ∈ Aut(H × H). There exist f̃1, f̃2 ∈ PSL(2,R) such
that

f̃(w1,w2) =

{
(f̃1(w1), f̃2(w2)), if f̃ is factor-preserving,

(f̃1(w2), f̃2(w1)), if f̃ is factor-reversing.

In particular, Aut(H × H) = (Aut(H) × Aut(H)) ⋊ 〈J〉, where 〈J〉 is the group of
order two generated by the automorphism J(w1,w2) = (w2,w1).

Finally, the genus of a compact Riemann surface determines its universal cov-
ering.

Proposition 0.2. Compact Riemann surfaces can be characterized in the fol-
lowing way:

(i) the only compact Riemann surface of genus zero is the Riemann sphere
P1(C);

(ii) the universal covering of any compact Riemann surface of genus one is
the complex plane C, and the group of deck transformations is a lattice:

Λ = Zω1 ⊕ Zω2, with ω1, ω2 ∈ C, and ω1

ω2
6∈ R;

(iii) the universal covering of any compact Riemann surface of genus greater
than or equal to two is the upper half-plane H, and the group of deck
transformations is a subgroup Γ < PSL(2,R).

0.4. Fuchsian groups

The subgroups of Aut(H) which define a Riemann surface structure on the quo-
tient do not necessarily act without fixed points. A Fuchsian group is a subgroup
Γ < PSL(2,R) which is discrete with respect to the topology induced by the usual
topology in R4. Fuchsian groups were introduced by Henri Poincaré in 1880 fol-
lowing writings of Lazarus Fuchs about differential equations. One can prove that
a subgroup Γ < PSL(2,R) is a Fuchsian group if and only if it acts discontinuously
on H, i.e.

(i) Every w ∈ H is a fixed point of only a finite number of transformations
γ1 = Id, . . . , γr ∈ Γ;

(ii) For every w ∈ H there exists a neighbourhood U such that γ(U) ∩ U = ø
for every γ ∈ Γ \ {γ1, . . . , γr}.
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The quotient H/Γ of H by the action of a Fuchsian group Γ has a natural Riemann
surface structure. The elements of Γ that fix points in H correspond precisely
those of finite order. If the resulting Riemann surface H/Γ is compact, the set
of conjugacy classes of finite order elements of Γ is finite. One can take suitable
representatives γi of order mi such that for every w ∈ H the set of elements of Γ
fixing it is either trivial or a cyclic group generated by an element conjugate to one
of the γi. Under these assumptions, if the Riemann surface defined by Γ has genus
g we say that Γ has signature (g;m1, . . . ,mk).

Let now Γ,Γ′ < PSL(2,R) be Fuchsian groups acting without fixed points on
H and S = H/Γ and S′ = H/Γ′ be the corresponding (not necessarily compact)
Riemann surfaces uniformised by them. Then S and S′ are isomorphic if and only if
there exists γ ∈ PSL(2,R) such that Γ′ = γΓγ−1. Moreover Aut(H/Γ) ∼= N(Γ)/Γ,
where N(Γ) = {γ ∈ PSL(2,R) : γΓγ−1 = Γ} is the normaliser of Γ in PSL(2,R).

If Γ is not cyclic then N(Γ) is also a Fuchsian group, and therefore compact
Riemann surfaces of genus greater than or equal to two have finite group of auto-
morphisms.

0.5. Hyperbolic geometry and fundamental domains

One of the most relevant facts about holomorphic self-mappings of the disc is
their relation with hyperbolic geometry. Let us first recall some concepts about this
geometry. The basic idea behind hyperbolic (plane) geometry is replacing Euclid’s
fifth postulate (more precisely Playfair’s axiom):

For any given line L and point P not on L, there is exactly one
line through P that does not intersect L.

by the following one:

For any given line L and point P not on L, there are infinitely
many lines through P that do not intersect L.

The hyperbolic plane satisfies this new axiom. It is a simply connected Rie-
mannian manifold of dimension 2 whose metric has constant curvature −1. The
metrics

ds2
H
=
dx2 + dy2

y2
and ds2

D
=

dx2 + dy2

(1− (x2 + y2))2

on the upper half-plane H and on the disc D respectively turn them into models of
the hyperbolic plane. These metrics are conformal to the Euclidean one in R2, and
therefore the Euclidean angles are preserved.

One can compute the hyperbolic length of a curve γ(t) = (x(t), y(t)) and the
hyperbolic area of a set E contained in H or in D through the formulae

ℓH(γ) =

∫ √
x′(t)2 + y′(t)2

y(t)
dt , AH(E) =

∫ ∫

E

dxdy

y2
,

ℓD(γ) =

∫ √
x′(t)2 + y′(t)2

1− (x(t)2 + y(t)2)
dt , AD(E) =

∫ ∫

E

dxdy

(1− (x2 + y2))2
.

In both models the geodesics of the hyperbolic metric are arcs of (generalised)
circumferences which intersect perpendicularly the border, ∂H = R ∪ {∞} in the
case of H and ∂D = S1 in the case of D.

The group Aut(H) ∼= PSL(2,R) of holomorphic self-mappings of H coincides
with the group of orientation-preserving isometries of the hyperbolic metric and acts
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transitively on the set of hyperbolic geodesics. In particular, its elements preserve
both hyperbolic distance and hyperbolic area.

Let us now consider a Fuchsian group Γ < PSL(2,R) acting on the upper-half
plane. We will call fundamental domain of Γ to any closed subset Ω ⊂ H such that:

(i) Ω contains at least one point of each orbit of Γ;
(ii) the interior of Ω does not contain points equivalent under Γ;
(iii) AH(∂Ω) = 0, where ∂Ω is the border of Ω.

If Ω is a fundamental domain, H =
⋃
γ∈Γ γ(Ω) and we say that Ω and its images

under Γ form a tessellation of H. There is a specific kind of fundamental domains
with particularly nice properties. Let p be a point not fixed by any non-trivial
element of Γ. We call Dirichlet region of Γ centered at p to the set

Dp(Γ) = {w ∈ H : ρH(w, p) ≤ ρH(γ(w), p), ∀γ ∈ Γ},
where ρH is the hyperbolic distance. The region Dp(Γ) is an intersection of hy-
perbolic half-planes and therefore it is a convex hyperbolic polygon, i.e. a closed
connected set on H whose border is formed by arcs of hyperbolic geodesics. As a
consequence one can represent the compact Riemann surface H/Γ as a fundamental
polygon P together with a side pairing on the sides s1, . . . , sn, so that for every si
there is an sj(i) and a γ ∈ Γ such that γ(si) = sj(i).

Moreover, if the group of elements of Γ fixing a vertex vj ∈ P is generated by
γj ∈ Γ, then the angle at vj is αj = 2π/ord(γj). The converse is included in the
following theorem.

Theorem 0.1 (Poincaré). Let P ⊂ H be a hyperbolic polygon with (unordered)
sides s1, . . . , sn, s

′
1, . . . , s

′
n. Suppose that there exist elements γi ∈ PSL(2,R) such

that γi(si) = s′i for each i = 1, . . . , n and let Γ = 〈γ1, . . . , γn〉. If for any complete
collection Vj of vertices of P equivalent under Γ the sum of its angles is equal to
2π/mj with mj ∈ N, then the group Γ acts properly discontinuously on H and H/Γ
is a Riemann surface. If moreover P ∩ ∂H = ø, then H/Γ is compact.

0.6. Dessins d’enfants

In the Grothendieck-Belyi theory of dessins d’enfants there are two main in-
gredients. First, a dessin d’enfant is a pair (S,D), where S is a compact oriented
topological surface and D is a finite graph embedded in S satisfying the following
properties:

(i) it is a bicoloured graph, i.e. every vertex has an assigned colour, white (◦)
or black (•), in such a way that the two vertices of an edge have always
different colours;

(ii) each connected component of the complement S \ D is homeomorphic to
a disc. Each of them will be called face of the dessin.

We will regard two dessins (S1,D1) and (S2,D2) as equivalent (or isomorphic)
if there exists an orientation-preserving homeomorphism f : S1 −→ S2 whose re-
striction f |D1 induces an isomorphism of bicoloured graphs f |D1 : D1 −→ D2. The
degree of a vertex of D is defined as the number of incident edges and the degree
of a face is defined as half the number of edges delimiting that face, counting mul-
tiplicities. If the least common multiples of the degrees of the white vertices, black
vertices and faces are l, m and n respectively, we will say that the type of the dessin
is (l,m, n).
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The other ingredient is Belyi functions. A Belyi function is a meromorphic
function β : S −→ P1 on a Riemann surface S with three ramification values at
most, which we can suppose to be 0, 1 and ∞. We will consider two Belyi pairs
(S, f) and (S′, f ′) equivalent if there exists an isomorphism F : S −→ S′ such that
f = f ′ ◦ F .

Grothendieck pointed out that there is a bijective correspondence between
equivalence classes of dessins d’enfants and equivalence classes of Belyi pairs. To
recover a dessin from a Belyi function β one simply takes the inverse image of the
interval [0, 1] under β and considers β−1(0) as white vertices and β−1(1) as black
vertices. Constructing a Belyi function from a dessinD is slightly more complicated.
It can be achieved by considering a triangulation associated to D and constructing
a topological covering β from S minus the set of vertices and face centres of D to
P1 \ {0, 1,∞}, which endows S with a Riemann surface structure SD to which β
extends as a meromorphic function with three ramification values. The degree of
a given white vertex, black vertex or face of the dessin can be understood then as
the ramification order of β in such point.

The importance of this fact lies on its relation with the theorem of Belyi ([12]),
which states that a compact Riemann surface S is isomorphic to an algebraic curve
defined over the field of algebraic numbers Q if and only if there exists a Belyi
function f : S −→ P1.

The fact that any Riemann surface admitting a Belyi function can be defined
over Q was already known and it follows from Weil’s criterion ([67], see also [37]).
However the proof of the other implication, which is due to Belyi, is as astonishing
as simple. Grothendieck himself wrote about it in [44]: “[...]Belyi annonce juste-
ment ce résultat, avec une démonstration d’une simplicité déconcertante tenant en
deux petites pages d’une lettre de Deligne – jamais sans doute un résultat profond
et déroutant ne fut démontré en si peu de lignes!” 1. This proof is based on con-
structing a function f from S to the sphere P1 ramified only over rational values,
and compose it with suitable Belyi polynomials, which are polynomials of the form

Pm,n(w) =
(m+ n)m+n

mm · nn wm(1 − w)n.

The relevant fact is that 0, 1, m
m+n and ∞ are the only ramification points of

this polynomial, and they are sent to {0, 1,∞}. Therefore, one can compose the
function f with consecutive suitable polynomials Pmi,ni

so that so that the set of
ramification values of the resulting function ends up being the set {0, 1,∞}.

Theorem (Belyi–Grothendieck). For any Riemann surface S of genus g de-
fined over Q there exists a dessin D on the compact oriented topological surface of
genus g such that S = SD.

0.7. Quaternion algebras

The following definition works for any field k, but we will only focus on subfields
of the complex field and its localisations (some of the following statements might
not be true in characteristic 2). A quaternion algebra A over k is a 4-dimensional

1The translation into English that can be found in the introduction of [56] reads: “[...]Belyi
announced exactly that result, with a proof of a disconcerting simplicity which fit into two little
pages of a letter of Deligne – never, without a doubt, was such a deep and disconcerting result
proved in so few lines!”.
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central simple k−algebra, i.e. a k−algebra of dimension 4 without proper two-sided
ideals, whose centre agrees with the field k. There always exist a, b ∈ k∗ and a basis
{1, i, j, ij} of A such that we can write

A = {x0 + x1i+ x2j + x3ij : x0, x1, x2, x3 ∈ k, i2 = a, j2 = b, ij = −ji}.
Note that (ij)2 = −ab. Conversely, any choice of a, b ∈ k∗ defines a quaternion
algebra A over k. Under these conditions we will denote it by the Hilbert symbol
A = (a,bk ). However different choices of a and b can lead to isomorphic algebras.

Given an element x = x0 + x1i + x2j + x3ij, its conjugate is defined as x =
x0 − x1i− x2j − x3ij. This allows us to define a reduced norm and a reduced trace
on A as

n(x) = xx = x20 − ax21 − bx22 + abx23, and tr(x) = x+ x = 2x0.

All these definitions do not depend on the choice of basis. The invertible elements
of A, the set of which is denoted by A∗, are precisely those x such that n(x) 6= 0.
We will write A1 ⊂ A∗ for the subgroup of elements of norm 1.

We will also need the following well-known theorem ([65], Ch. I, Thm 2.1).

Theorem (Skolem–Noether). Let M,M ′ ⊂ A be subalgebras of a quaternion
k−algebra A. Any isomorphism of algebras φ : M −→ M ′ is induced by an inner
automorphism of A.

It is known that any quaternion k−algebra A is either a division algebra or
isomorphic to M2(k) (if k is algebraically closed, it is necessarily isomorphic to

M2(k)). In the case when A = (a,bk ) is a division algebra, there exists an injection

(0.1) ρ : A −→M2(k(
√
a))

of A into the 2 × 2 matrices over the quadratic field extension k(
√
a) of k, so one

can always regard any quaternion algebra as an algebra of matrices. Moreover, via
this identification the reduced norm n(x) and the reduced trace tr(x) on A coincide
with the matrix determinant det(ρ(x)) and the matrix trace tr(ρ(x)).

The easiest examples of quaternion algebras are the Hamilton quaternions H =
(−1,−1

R
) and the algebra of matrices M2(R) = (1,1

R
) and, in fact, these two are

the only quaternion algebras over the real field, up to isomorphism. An analogous
situation occurs over p−adic fields. Any quaternion algebra over a p−adic field kp
is isomorphic either to M2(kp), or to a unique division algebra.

Let L/k be a field extension. If A = (a,bk ) we can define the quaternion

L−algebra A ⊗k L = (a,bL ). In particular, for any valuation v on k we can de-
fine the local quaternion algebra Av = A ⊗k kv, where kv is the localisation of k
with respect to v. If Av is isomorphic to M2(kv) we say that A splits at the valu-
ation v; otherwise we say that A ramifies at v. We will write Ωf (k) for the set of
non-Archimedean valuations of k, and the subset of Ωf (k) consisting of the valu-
ations at which A ramifies is denoted by Ramf (A). The valuations v ∈ Ramf (A)
correspond to certain primes ideals P, and the discriminant of A is defined as
D(A) =

∏
v∈Ramf (A) P.

Similarly, for any Galois element σ ∈ Gal(C) one can define the quaternion

σ(k)−algebra Aσ = (σ(a),σ(b)σ(k) ).

Let now Rk be the ring of integers of k. An order in the quaternion k−algebra
A is an Rk−module O ⊂ A which is a ring with unity and such that O⊗Rk

k = A.
We say that O is a maximal order if it is maximal with respect to the inclusion and



0.8. ARITHMETIC FUCHSIAN GROUPS 9

we call it an Eichler order if it is the intersection of two maximal orders ([65], p.
20). As before, given an order O in A, for each valuation v on k we can define the
order Ov = O ⊗Rk

Rv, where Rv is the ring of integers of the local field kv. One
has the following result (see for example [51], Lemma 6.2.7).

Lemma 0.1. Fix an order I in A. Given any other order O in A, for almost
every non-Archimedean valuation v one has Iv = Ov. Moreover, there is a bijection

{orders O ⊂ A} ←→ {(Lv)v∈Ωf (k) : Lv is an order in Av,
Lv = Iv for almost all v ∈ Ωf (k)}

given by O 7−→ (Ov)v∈Ωf (k). This bijection preserves inclusion.

In the case where A = M2(k) and Rk is a principal ideal domain, all maximal
orders are conjugate in A to M2(Rk). In general the number of conjugacy classes
of maximal orders of A is called the type number of A.

The p−adic situation is simpler. If kp is a finite extension of the p−adic field
Qp, then the ring of integers Rp has only one maximal ideal P . If A is a division
algebra over kp, then it has only one maximal order. On the other hand, if A is
isomorphic to M2(kp), then its maximal orders are usually represented as vertices
of a regular tree of valency q+1, where the norm q denotes the number of elements
of the residue class field Rp/P (see [65] pp. 40–41). Two vertices are joined by an
edge if and only if the corresponding maximal orders are conjugate by an element
whose norm is in R∗

pP (see Figure 0.1).

Figure 0.1. Part of the tree of local maximal orders for q = 5.

0.8. Arithmetic Fuchsian groups

Let Γ1,Γ2 be Fuchsian groups. They are said to be commensurable if their
intersection has finite index in both of them, i.e. [Γ1 : Γ1 ∩ Γ2] < ∞ and [Γ2 :
Γ1 ∩ Γ2] <∞. The commensurator group of a Fuchsian group Γ is then defined as

Comm(Γ) = {γ ∈ PSL(2,R) : [Γ : Γ∩ γΓγ−1] <∞ and [γΓγ−1 : Γ∩ γΓγ−1] <∞}.
We define the invariant trace field of Γ as the field kΓ = Q(tr(Γ2)) generated

by the traces of the squares of elements of Γ. This is an invariant of the commen-
surability class of Γ, in other words any other Fuchsian group commensurable with
Γ has the same invariant trace field.

The following is a consequence of a more general theorem by Borel and Harish-
Chandra. Let k be a totally real number field, i.e. a number field all of whose
embeddings σ(k) ⊂ C lie in R. Let A be a quaternion algebra over k ramified
at all infinite valuations but one, that is, such that A ⊗k R ∼= M2(R) and for
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every σ ∈ Gal(C) with σ 6= id one has Aσ ⊗σ(k) R ∼= H. Note that under these
conditions, the injection ρ in equation (0.1) allows us to regard A as a subalgebra
of M2(R). Let O be an order in A and write O1 for its norm 1 group. Then
the subgroup Pρ(O1) ⊂ PSL(2,R), where the P stands for the usual projection
SL(2,R)→ PSL(2,R), is a Fuchsian group.

A Fuchsian group Γ is said to be an arithmetic Fuchsian group if it is commen-
surable with any such Pρ(O1).

The most classical example of an arithmetic Fuchsian group is PSL(2,Z). It is
(the projective image of) the norm 1 group of the ring of matrices M2(Z), which is
an order in the quaternion Q−algebra M2(Q). Note that this quaternion algebra
trivially satisfies the hypothesis above.

Very few among all Fuchsian groups are arithmetic, but they play a central role
in many situations. One of the points in which they differ from the non-arithmetic
Fuchsian groups is the following ([52]).

Theorem (Margulis). Let Γ be a Fuchsian group. Then Γ is non-arithmetic if
and only if Comm(Γ) is an extension of finite index of Γ. Otherwise Comm(Γ) is
dense in PSL(2,R).



CHAPTER 1

Triangle groups

“À bas Euclide! Mort aux triangles!”

— Jean Dieudonné

Triangle groups play a central role both in the theories of dessins d’enfants and
of Beauville surfaces. They are Fuchsian groups which correspond to orbifolds of
genus zero with three cone points.

More precisely, to construct a triangle group of signature (l,m, n) one consid-
ers a hyperbolic triangle T in the hyperbolic plane, with vertices v0, v1 and v∞
and angles π/l, π/m and π/n respectively. The reflection Ri over the edge of T
opposite to vi is an anticonformal isometry of the hyperbolic plane. The group
generated by these reflections acts discontinuously on H in such a way that T is a
fundamental domain. The index-2 subgroup formed by the orientation-preserving
transformations is called a triangle group of type (l,m, n). Elementary hyperbolic
geometry ensures that the triangle T , and hence the corresponding triangle group,
are unique up to conjugation in PSL(2,R). From now on we reserve the notation
T = T (l,m, n) for the triangle in the upper half-plane H which is the image under

M(w) = i(1+w)
1−w of the triangle depicted in Figure 1.1 inside the unit disc, i.e. the

only triangle in D with v0 = 0, v∞ ∈ R+ and v1 ∈ D−, the lower half-disc. The
corresponding triangle group will be denoted by ∆ = ∆(l,m, n). Moreover, we will
always place coinciding orders at the beginning of the triple, so that if two of them
coincide, our triple will be (l, l, n). If the integers are all different we will always
consider the triple (l,m, n) such that l < m < n.

The quadrilateral consisting of the union of T and one of its reflections Ri(T )
(e.g. the shaded triangle in the figure) serves as a fundamental domain for the group
∆(l,m, n), and therefore its images under ∆(l,m, n) tessellate the whole hyperbolic
plane. Thus, the quotient H/∆ is an orbifold of genus zero with three cone points
[v0]∆, [v1]∆ and [v∞]∆ of orders l, m and n respectively, where for an arbitrary
Fuchsian group Λ the notation [v]Λ stands for the orbit of the point v under the
action of Λ.

1.1. Properties of triangle groups

It is a classical fact that ∆(l,m, n) has presentation

∆(l,m, n) = 〈x, y, z : xl = ym = zn = xyz = 1〉 ,
where

(1.1) x = R1R∞ , y = R∞R0 , z = R0R1 ,

11
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are positive rotations around v0, v1 and v∞ through angles 2π/l, 2π/m and 2π/n
respectively. It is also classical that any other finite order element of ∆(l,m, n) is
conjugate to a power of x, y or z and that these account for all elements in ∆ that
fix points. We will always identify H/∆ with P1 via the unique isomorphism

(1.2)

Φ : H/∆ −→ P1

[v0]∆ 7−→ 0
[v1]∆ 7−→ 1
[v∞]∆ 7−→ ∞

◦ ◦

◦

◦

0=v0 v∞

v1

x(v1)

x

z

y

T

R1(T )

Figure 1.1. Generators x, y and z together with a fundamental
domain of ∆(l,m, n) (depicted inside the unit disc model of the
hyperbolic plane).

These groups are rigid among Fuchsian groups, in the sense that the quotient
orbifold H/∆(l,m, n) does not admit non-trivial deformations. This rigidity to-
gether with Nielsen’s theorem, that states that any group automorphism of a Fuch-
sian group ∆ is induced by conjugation by a homeomorphism of the half-plane,
implies that group automorphisms of a triangle group ∆(l,m, n) are induced by
isometries of the hyperbolic plane. Actually, this result can be proved without
using such advanced techniques.

Lemma 1.1. The automorphism group of a triangle group ∆ is

Aut(∆) = 〈N(∆), τ〉 ,
where N(∆), the normaliser of ∆ in PSL(2,R), acts by conjugation and τ is deter-
mined by

τ : ∆ −→ ∆
x 7−→ x−1

y 7−→ y−1

z 7−→ yz−1y−1

Proof. Let us denote X = τ(x), Y = τ(y) and Z = τ(z). Being elliptic
elements we can assume modulo conjugation in N(∆) that they are conjugate to
powers of x, y and z respectively. Let a, b and c be hyperbolic rotations through
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angles of 2π/l, 2π/m and 2π/n around u, v and w, and let X = ak, Y = bj

and Z = (akbj)−1 = ch, 0 < k < l, 0 < j < m and 0 < h < n (note that
(k, l) = (j,m) = (h, n) = 1). Modulo conjugation with γ ∈ ∆ we can suppose that
u is the origin, and therefore X = xk.

We will use the following formulae of hyperbolic geometry (see for example [10],
chapter 7). The first one is the cosine rule for hyperbolic triangles. For any hy-
perbolic triangle with angles α, β and γ, the length A of the edge opposite to the
vertex of angle α is given by

cosh(A) =
cos(γ) cos(β) + cos(α)

sin(γ) sin(β)
.

The next ones relate the angles of rotation of elements of PSL(2,R) with their
traces. Let φ and ψ be hyperbolic rotations of angle 2α and 2β, with α, β ∈ (0, π),
around points u and v (u 6= v), and let us suppose furthermore that their sense of
rotation is the same. Then

Tr(φ)2 = 4 cos2(α) ,

|Tr(φ ◦ ψ)| = 2(cosh ρ(u, v) sinα sinβ − cosα cosβ) .

Applying these last two formulae to (akbj)−1 = ch, isolating the term cosh ρ(0, v)
and considering the possible values of k, j and h we get the following inequality

(1.3) cosh ρ(0, v) =
cos

(
kπ
l

)
cos

(
jπ
m

)
+
∣∣cos

(
hπ
n

)∣∣
sin

(
kπ
l

)
sin

(
jπ
m

) ≤ cos
(
π
l

)
cos

(
π
m

)
+ cos

(
π
n

)

sin
(
π
l

)
sin

(
π
m

) ,

with equality if and only if k ≡ ±1 mod l, j ≡ ±1 mod m and h ≡ ±1 mod n.
Now consider any triangle of the tessellation with a vertex in the origin, and

call v′ the vertex which is fixed by an element conjugate to z, which has angle
π/m. By the cosine rule, the right-hand part of the inequality in (1.3) is exactly
cosh ρ(0, v′), and hence

cosh ρ(0, v) ≤ cosh ρ(0, v′) =
cos

(
π
l

)
cos

(
π
m

)
+ cos

(
π
n

)

sin
(
π
l

)
sin

(
π
m

)

But it is clear that there are no vertices of the tessellation of angle π/m closer to
the origin than v′, and therefore cosh ρ(0, v) = cosh ρ(0, v′) and v is the vertex of
a triangle with another vertex in the origin. As a consequence X , Y and Z are
rotations of angles 2π

p , 2π
q and 2π

r around the three vertices of a triangle.

On the other hand, the only possibilities for k and j are k = j = 1 or k =
l − 1, j = m − 1. Therefore, either X = x and Y = xεyx−ε or X = x−1 and
Y = xεy−1x−ε, for some integer ε. �

Corollary 1.1. Any group isomorphism between triangle groups is induced
by an isometry of the hyperbolic plane.

Proof. The only thing left to prove is that the isomorphism τ just introduced
is induced by an isometry of the hyperbolic plane. But clearly τ is induced by
reflection on the geodesic passing through v0 = 0 and v1. �

This fact motivates the study of normalisers of triangle groups. It is a well-
known fact (see [61]) that the normaliser N(∆) in PSL(2,R) of a triangle group
∆ ≡ ∆(l,m, n) is a triangle group again, and that the quotientN(∆)/∆ is faithfully
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represented in the symmetric group S3 via its action on the vertices [v0], [v1], [v∞]
of the orbifold H/∆. Thus

(1.4) N(∆)/∆ ∼=




{1}, if l, m and n are all distinct;
S2, if l = m 6= n;
S3, if l = m = n.

where Sk stands for the symmetric group on k elements.
In the second case, a representative for the non-trivial element (1, 2) ∈ S2 is the

rotation λ4 ∈ N(∆) of order two around the midpoint of the segment joining v0 and
v1 (see Figure 1.2). Conjugation by this element yields an order two automorphism
of ∆ which interchanges x and y and sends z to x−1zx. We will denote it by σ̃4.

In the case when l = m = n we can choose the same representative λ4 for the
element (1, 2) ∈ S3, and the order three rotation λ1 in the positive sense around
the incentre of T (i.e. the point where the three angle bisectors meet, see [10] §7.14)
for (1, 2, 3) ∈ S3. Conjugation by the latter induces an automorphism σ̃1 of ∆ of
order three which sends x to y and y to z (see Figure 1.2).

◦

◦ ◦
x

z

y

◦
◦
λ4

λ1

◦

◦ ◦
x

z

y

◦
λ4

Figure 1.2. Generators of ∆(l, l, l) and ∆(l, l, n), and represen-
tatives of (1, 2), (1, 2, 3) ∈ S3.

In Table 1 a representative λi, i = 0, . . . , 5, is chosen for each element of
S3
∼= N(∆)/∆, and for each automorphism σ̃i of ∆ obtained by conjugation by

λi, its action on the triple of generators x, y, z is indicated. The table describes
the case in which l = m = n, but the other two cases are also contained in it, for
obviously the case l = m 6= n corresponds to the first and the fifth lines, and the
case where l,m, n are all different corresponds to just the identity.

It is worth noting that in the case when N(∆)/∆ = S2 or {1} the extension
splits, i.e N(∆) = ∆ × (N(∆)/∆), but when N(∆)/∆ = S3 it does not, since no
Fuchsian group can contain a noncyclic finite group. This means that the repre-
sentatives of N(∆)/∆ cannot be chosen naturally to form a complement of ∆.

To summarize, N(∆) can be written as

(1.5) N(∆) ∼=





∆, if l, m and n are all distinct;
〈∆, λ4 〉, if l = m 6= n;
〈∆, λ1, λ4 〉, if l = m = n.
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Permutation Representatives Aut(∆) Action on the
of N(∆)/∆ generators of ∆

Id λ0 = Id σ̃0 ≡ Id (x, y, z)

(1, 2, 3) λ1 σ̃1 : γ 7→ λ1γλ
−1
1 (y, z, x)

(1, 3, 2) λ2 = λ21 σ̃2 : γ 7→ λ2γλ
−1
2 (z, x, y)

(1, 3) λ3 = λ1λ4 σ̃3 : γ 7→ λ3γλ
−1
3 (z, y, y−1xy)

(1, 2) λ4 σ̃4 : γ 7→ λ4γλ
−1
4 (y, x, x−1zx)

(2, 3) λ5 = λ21λ4 σ̃5 : γ 7→ λ5γλ
−1
5 (x, z, z−1yz)

Table 1. Correspondence N(∆)/∆ ∼= S3.

1.2. Triangle groups and dessins d’enfants

The importance of triangle groups in Grothendieck’s theory of dessins d’enfants
comes from the fact that any Belyi function β in a Riemann surface S can be
represented as the natural projection H/Λ −→ H/∆(l,m, n) from the quotient
surface H/Λ ∼= S to an orbifold H/∆(l,m, n) given by the inclusion Λ < ∆(l,m, n),
where the signature of ∆(l,m, n) depends on the ramification orders of β ([16, 68]).

We have two important families of dessins. A dessin d’enfant D of type (l,m, n)
(and its associated Belyi function) on a Riemann surface S is called uniform if all
white vertices, black vertices and faces have degree l, m and n respectively. In the
specific case where β is a uniform Belyi function of type (l,m, n), it corresponds to
the inclusion of a torsion-free group K in the triangle group ∆(l,m, n). The group
K is, of course, isomorphic to the fundamental group π1(S).

If, moreover, the automorphism group Aut(S) acts transitively on the edges of
the dessin, we say that D is regular. A regular Belyi function corresponds to the
normal inclusion of a uniformising group K of S in ∆(l,m, n), so that H/K −→
H/∆(l,m, n) is a Galois covering with group G ∼= ∆(l,m, n)/K. Riemann surfaces
which admit a regular Belyi function are called quasiplatonic curves (or triangle
curves). In the next section we will make this connection between quasiplatonic
curves and their covering groups G more explicit.

In these two cases one can study renormalisations of the dessin. Suppose that
D is a uniform dessin on a Riemann surface S associated to a Belyi function β, and
suppose that some of the orders of its type (l,m, n) are repeated. Then one can
construct other dessins on the same surface by renormalisation in the following way.
Consider an automorphism F : P1 −→ P1 of the Riemann sphere which permutes
the ramification values of β of the same order, i.e. F permutes, for instance, 0 and
1 if l = m 6= n, and F permutes 0, 1 and ∞ if l = m = n. In this way the map
βF = F ◦ β is a Belyi function again, and the corresponding dessin DF is called a
renormalised dessin of D.

Now, if the original Belyi function was given by an inclusion K < ∆, the
renormalised function βF is induced by an element of N(∆) in the following way:
there exists α ∈ N(∆) whose action on v0, v1 and v∞ coincides with the action of
F on 0, 1 and ∞, and then βF is given by the inclusion αKα−1 < ∆, since one has

βF : H/K
β−−−−→ H/∆

α−−−−→ H/∆

In the case when α additionally belongs to N(K), there exists an isomorphism
φ ∈ Aut(S) such that β ◦ φ = βF , and DF and D are isomorphic.
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1.3. Triangle coverings

Now let G be a finite group, S a compact Riemann surface and Aut(S) its
automorphism group. By a triangle G−covering (or a G−orbifold of genus zero) of
type (l,m, n) we will understand a quasiplatonic curve S together with a regular
Belyi function f : S −→ P1, ramified over 0, 1 and ∞ with orders l, m and n
respectively, such that the group of deck transformations Aut(S, f) is isomorphic to
the group G. Under these assumptions there is a monomorphism i : G −→ Aut(S)
where i(G) agrees with the covering group Aut(S, f) consisting of the elements
τ ∈ Aut(S) such that f ◦ τ = f , so that the Belyi function f agrees with the
quotient map S −→ S/i(G). Note that i is only determined up to composition with
an element of Aut(G). We will write (S, f) for such a G−covering, and we will
always suppose that it is hyperbolic, i.e. that the genus of S is g(S) ≥ 2.

Given (S1, f1) and (S2, f2) we say that an isomorphism τ : S2 −→ S1 is a strict
isomorphism of G−coverings if f2 = f1 ◦ τ , and we call it a twisted isomorphism if
f2 = F ◦ f1 ◦ τ for some automorphism F of P1. These two concepts can be better
visualized by means of the following two commutative diagrams

S1
τ←−−−− S2 S1

τ←−−−− S2

f1

y
yf2 f1

y
yf2

P1 Id−−−−−→ P1 P1 F−−−−−→ P1

Triangle G−coverings can be studied in a purely group theoretical way. We say
that a triple (a, b, c) of elements generating G is a hyperbolic triple of generators of
G of type (l,m, n) if the following conditions hold:

(i) abc = 1;
(ii) ord(a) = l, ord(b) = m and ord(c) = n;
(iii) 1

l +
1
m + 1

n < 1.

To such a hyperbolic triple of generators we can associate a triangleG−covering
of type (l,m, n) in the following way. The kernel K of the epimorphism

(1.6)

ρ : ∆(l,m, n) −→ G
x 7−→ a
y 7−→ b
z 7−→ c

is a torsion-free Fuchsian group so that S = H/K is a compact Riemann surface
which carries a monomorphism i : G −→ Aut(S) given by the rule

i(g)([w]K) = [δ(w)]K , for any choice of δ ∈ ∆ such that ρ(δ) = g .

It follows that the natural projection π : H/K −→ H/∆ induces a triangle
G−covering (S, f) of type (l,m, n) defined by the commutative diagram

(1.7) S = H/K

f

%%▲
▲▲

▲▲
▲▲

▲▲
▲▲

��

H/∆
Φ

// P1

where Φ is as in (1.2).
Such a covering is hyperbolic precisely because the orders l, m and n satisfy

condition (iii) above, as by the Riemann–Hurwitz formula the genus g(S) of S is
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given by

(1.8) 2g(S)− 2 = |G|
(
1−

(
1

l
+

1

m
+

1

n

))
.

Consider the action of Aut(G) on triples given by ψ(a, b, c) := (ψ(a), ψ(b), ψ(c))
for ψ ∈ Aut(G). Clearly the triples (a, b, c) and ψ(a, b, c) give rise to the same
G−cover.

Conversely a hyperbolic triangle G−covering (S, f) of type (l,m, n) determines
a triple of generators of G, defined up to an element of Aut(G), in the follow-
ing manner. Uniformisation theory tells us that there is a torsion-free Fuchsian
group K1 uniformising S, whose normaliser N(K1) contains ∆ = ∆(l,m, n), and
an isomorphism of coverings of the form

H/K1
ũ−−−−→ Sy

yf
H/∆

u−−−−→ P1

If the orders l, m and n are all distinct then necessarily u agrees with the
isomorphism Φ defined in (1.2). Otherwise note that any element of N(∆) induces
an automorphism of H/∆ which permutes the points [v0]∆, [v1]∆ and [v∞]∆ with
equal orders. Therefore there is an element α ∈ N(∆) producing the following
commutative diagram

(1.9)

H/α−1K1α
α−−−−→ H/K1

ũ−−−−→ Sy
y

yf
H/∆

α−−−−→ H/∆
u−−−−→ P1

where u◦α equals Φ. Thus, replacing Φ̃ with ũ◦α and α−1K1α with K, one always
has a diagram of the form

(1.10)

H/K
Φ̃−−−−→ Sy

yf
H/∆

Φ−−−−→ P1

This yields an epimorphism ρ : ∆ −→ G (which is defined only up to an
automorphism of G, just as the monomorphism i is) determined by the identity

(1.11) Φ̃([γ(w)]) = i (ρ(γ)) Φ̃([w])

for all γ ∈ ∆, and hence a hyperbolic triple of generators

(a, b, c) := (ρ(x), ρ(y), ρ(z)) .

1.3.1. Strict equivalence of triangle G−coverings. If in the above dis-
cussion, we start with a triangle G−covering (S′, f ′) strictly isomorphic to (S, f)
by means of a strict isomorphism τ : (S′, f ′) −→ (S, f) and choose corresponding
Fuchsian group representations we get a diagram as follows

S = H/K
τ←−−−− H/K ′ = S′

f

y
yf ′

P1 = H/∆
Id−−−−−→ H/∆ = P1
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We observe that, in order for this diagram to be commutative, the isomorphism
τ−1 : H/K −→ H/K ′ must be induced by an element δ ∈ ∆. We see that the

isomorphism Φ̃′ : H/K ′ −→ S′ defining the diagram analogous to (1.10) for the

pair (S′, f ′) is given by Φ̃′ = τ−1 ◦ Φ̃ ◦ δ−1. Plugging this expression into the

corresponding formula (1.11), which now reads Φ̃′([γ(w)]) = i′ (ρ′(γ)) Φ̃′([w]), we
get the identity

τ−1 ◦ i
(
ρ(δ−1γ)

)
= i′ (ρ′(γ)) ◦ τ−1 ◦ i

(
ρ(δ−1)

)
.

It follows that ρ′ = ψ◦ρ, where ψ ∈ Aut(G) is defined by ψ(g) = (i′)−1(g0 ·i(g)·g−1
0 )

with g0 = τ−1 ◦ i
(
ρ(δ−1)

)
. As a consequence (a′, b′, c′) = ψ(a, b, c) and we have the

following proposition.

Proposition 1.1. There is a bijection
{

Strict isomorphism classes
of triangle G−covers (S, f)

}
←→

{
Hyp. triples of generators

of G modulo Aut(G)

}

1.3.2. Twisted equivalence of triangle G−coverings. In order to prove
the analogous result of Proposition 1.1 for twisted coverings we need to identify
triples of generators modulo the action of a larger group.

Given a finite group G, we introduce for convenience the following bijections of
the set T(G; l,m, n) of hyperbolic triples of generators of G of a given type (l,m, n).
They are defined in the following way (cf. [5])

(1.12)
σ0(a, b, c) = (a, b, c) , σ3(a, b, c) = (c, b, b−1ab) ,
σ1(a, b, c) = (b, c, a) , σ4(a, b, c) = (b, a, a−1ca) ,
σ2(a, b, c) = (c, a, b) , σ5(a, b, c) = (a, c, c−1bc) .

Note that they are defined so as to satisfy

σi(ρ(x), ρ(y), ρ(z)) =
(
ρ
(
λixλ

−1
i )

)
, ρ

(
λiyλ

−1
i

)
, ρ

(
λizλ

−1
i

))
=(1.13)

= (ρ (σ̃i(x)) , ρ (σ̃i(y)) , ρ (σ̃i(z))) ,

where ρ : ∆(l,m, n) −→ G is the epimorphism associated in (1.6) to each triple of
generators.

In order to understand the relationship between triples of generators of G and
twisted isomorphism classes of triangle G−coverings, we will need to consider the
following group of bijections of T(G; l,m, n)

A(G; l,m, n) =





Aut(G),
〈Aut(G), σ4 〉,
〈Aut(G), σ1, . . . , σ5 〉,

if l, m, n are all distinct;
if l = m 6= n;
if l = m = n.

The action of the composition of two elements σi and σj on a triple (a, b, c)
follows the following table

σ0 σ1 σ2 σ3 σ4 σ5

σ0 σ0 σ1 σ2 σ3 σ4 σ5
σ1 σ1 σ2 σ0 γb−1 ◦ σ4 γa−1 ◦ σ5 γc−1 ◦ σ3
σ2 σ2 σ0 σ1 γc ◦ σ5 γb ◦ σ3 γa ◦ σ4
σ3 σ3 σ5 σ4 γb−1 ◦ σ0 γa−1 ◦ σ2 γc−1 ◦ σ1
σ4 σ4 σ3 σ5 σ1 σ0 σ2
σ5 σ5 σ4 σ3 γc ◦ σ2 γb ◦ σ1 γa ◦ σ0
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where the product σi ·σj is to be found in the intersection of the i−th row and the
j−th column, and γg stands for conjugation by an element g ∈ G. Using this table,
one can easily check that G is normal in A(G; l,m, n).

As a consequence the action of any element µ ∈ A(G; l,m, n) on a specific
triple (a, b, c) can be written as µ = ψ ◦ σi for some σi, i = 0, . . . , 5, where ψ is an
automorphism of G. We note that in general ψ depends on the triple (a, b, c).

Given an element δ ∈ PSL(2,R), we will write ϕδ for conjugation by δ.

Lemma 1.2. The following two statements are equivalent:

(i) (a, b, c) ≡ (a′, b′, c′) mod A(G; l,m, n);
(ii) there exist ψ ∈ Aut(G) and δ ∈ N(∆) such that ρ′ = ψ ◦ ρ ◦ ϕδ.
Proof. Let us suppose that (a, b, c) ≡ (a′, b′, c′) mod A(G; l,m, n). By the

comments above there exists a transformation σi such that (a′, b′, c′) = ψ(σi(a, b, c)).
Therefore, using (1.13), we have

(ρ′(x), ρ′(y), ρ′(z)) = (a′, b′, c′) = ψ(ρ(σ̃i(x)), ρ(σ̃i(y)), ρ(σ̃i(z))) .

For the converse, note that by (1.5) every δ ∈ N(∆) is of the form δ = ηλi, for
some λi, i = 0, . . . , 5 and η ∈ ∆.

Therefore, we can write

(a′, b′, c′) = ψ (ρ(ϕδ(x)), ρ(ϕδ(y)), ρ(ϕδ(z))) = ψ(g(σi(a, b, c))g
−1) ,

where g = ρ(η). �

For later use we record the following remark.

Remark 1.1. If instead of the group A(G; l,m, n) we restrict ourselves to the
subgroup

I(G; l,m, n) =





G,
〈G, σ4 〉,
〈G, σ1, σ4 〉,

if l, m, n are all distinct;
if l = m 6= n;
if l = m = n.

where G acts on T(G; l,m, n) by conjugation, then the corresponding result in
Lemma 1.2 will be that (a, b, c) ≡ (a′, b′, c′) mod I(G; l,m, n) if and only if ρ′ = ρ◦ϕδ
for some δ ∈ N(∆).

More precisely, if (a′, b′, c′) = g · (σi(a, b, c)) · g−1, then the element δ ∈ N(∆)
can be taken to be δ = ηλi, for any η ∈ ∆ such that g = ρ(η).

We can now prove the analogue of Proposition 1.1 for the twisted case, namely

Proposition 1.2. There is a bijection
{

Twisted isomorphism classes
of triangle G−covers (S, f)

}
←→

{
Hyp. triples of generators
of G modulo A(G; l,m, n)

}

Proof. Let (a, b, c), (a′, b′, c′) be two triples of hyperbolic generators of G
determining two epimorphisms ρ and ρ′, and hence two triangle G−coverings as
in (1.7). If (a′, b′, c′) ≡ (a, b, c) mod A(G; l,m, n) then by Lemma 1.2 one has the
equality K ′ := ker ρ′ = δKδ−1 and a commutative diagram as follows

S = H/K
δ−−−−→ H/K ′ = S′

f

y
yf ′

P1 F−−−−−→ P1
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where F = Φ◦ δ ◦Φ−1 and δ is the automorphism of H/∆ induced by δ. Therefore,
in this case, the corresponding coverings (S, f) and (S′, f ′) are twisted isomorphic.

Conversely, if we start with a twisted isomorphism of coverings τ between (S, f)
and (S′, f ′), then there is a commutative diagram of the form

S
Id−−−−−→ S

τ−−−−→ S′

f

y
yf1

yf ′

P1 F−−−−−→ P1 Id−−−−−→ P1

where (S, f1) := (S, F ◦ f) for a suitable Möbius transformation F . Since (S, f1)
and (S′, f ′) are strictly isomorphic, there is an automorphism ψ ∈ Aut(G) such
that their corresponding epimorphisms ρ1 and ρ′ are related by ρ1 = ψ ◦ ρ′. Now,
as explained in the previous sections (see (1.9) and (1.10)), from the Fuchsian group
point of view the coverings (S, f) and (S, f1) correspond to diagrams

H/K
Φ̃−−−−→ S H/δ−1Kδ

Φ̃1−−−−−→ Sy
yf

y
yF◦f

H/∆
Φ−−−−→ P1 H/∆

Φ−−−−→ P1

where Φ̃1 = Φ̃ ◦ δ and δ ∈ N(∆) induces the automorphism δ : H/∆ −→ H/∆

such that F ◦ Φ ◦ δ = Φ. As a consequence the epimorphism ρ1 corresponding to
(S, F ◦ f) is defined by the equality

Φ̃1([γ(w)]) = i (ρ1(γ)) Φ̃1([w]) ,

and therefore ρ1(γ) = ρ(δγδ−1).
By Lemma 1.2, since ρ(γ) = ρ1(δ

−1γδ) = ψ ◦ ρ′(δ−1γδ), we finally have that
(a, b, c) ≡ (a′, b′, c′) mod A(G; l,m, n). �

1.4. Galois conjugation of triangle curves

It is known (see [37]) that both G−covers and its automorphism groups can be
simultaneously defined over Q. This permits an action of Gal(Q/Q) on equivalence
classes of G−coverings (S, f). For an element σ ∈ Gal(Q/Q) one simply defines
(S, f, i)σ := (Sσ, fσ, iσ), where fσ : Sσ −→ P1 is obtained by applying σ to the
coefficients defining the covering f : S −→ P1 and iσ : G −→ Aut(Sσ) is defined by
iσ(h) = (i(h))σ.

This rather canonical action of the absolute Galois group on G−covers turns
out to be very mysterious at the level of triples of generators, their equivalent
counterparts in Proposition 1.1. One way to gain some insight on it is by relating the
rotation numbers of these generators at certain points of S to their rotation numbers
at the corresponding points of Sσ. Let us stress here that in [63] M. Streit used
rotation numbers to study the action of the Galois group on quasiplatonic curves
uniformised by normal subgroups of ∆(2, 3, n) with quotient group isomorphic to
PSL(2, p). Here we sum up Streit’s method in a more general context.

Proposition 1.3. Let (a, b, c) be a hyperbolic triple of generators of G of type
(l,m, n) defining a G−covering (S, f). Then for any σ ∈ Gal(Q/Q) the G−covering
(Sσ, fσ) corresponds to a hyperbolic triple of generators (aσ, bσ, cσ) of G of the form

aσ = haa
αh−1

a , bσ = hbb
βh−1

b , cσ = hcc
γh−1

c ,
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where σ(ζαl ) = ζl, σ(ζ
β
m) = ζm and σ(ζγn) = ζn and ha, hb, hc ∈ G.

Proof. First of all note that, since by formula (1.11) the action of the element

a ∈ G (resp. b, resp. c) at the point P0 = Φ̃([v0]K) (resp. P1 = Φ̃([v1]K), resp.

P∞ = Φ̃([v∞]K)) is locally described by the action of the element x ∈ ∆ (resp. y,
resp. z), we may conclude that the element a (resp. b, resp. c) possesses one fixed
point in the fibre of 0 (resp. of 1, resp. of ∞) with rotation number ζl (resp. ζm,
resp. ζn).

Suppose now that (aσ, bσ, cσ) is a hyperbolic triple of generators of G defining
the G−covering (Sσ, fσ, iσ). This means that ifKσ is the kernel of the epimorphism

ρσ : ∆(l,m, n) −→ G
x 7−→ aσ
y 7−→ bσ
z 7−→ cσ

there is a commutative diagram

H/Kσ
Φ̃−−−−→ Sσy

yfσ

H/∆
Φ−−−−→ P1

such that aσ (resp. bσ, resp. cσ) fixes a point P0,σ ∈ (fσ)−1(0) (resp. P1,σ ∈
(fσ)−1(1), resp. P∞,σ ∈ (fσ)−1(∞)) with rotation angle ζl (resp. ζm, resp. ζn).

On the other hand, since a fixes the point P0 ∈ f−1(0) with rotation number ζl
then, by definition of the action of G on Sσ, a fixes the point P σ0 ∈ (fσ)−1(0) with
rotation number σ(ζl). Since P0,σ and P σ0 belong to the same fibre (fσ)−1(0), there
must be an element h−1

a ∈ G such that iσ(h−1
a )(P0,σ) = P σ0 . Therefore haah

−1
a fixes

the point P0,σ with rotation angle σ(ζl) and so does haa
αh−1

a , with rotation angle
σ(ζαl ) = ζl. As a consequence aσ = haa

αh−1
a and, proceeding in the same way with

the other two generators, one gets

aσ = haa
αh−1

a ,

bσ = hbb
βh−1

b ,

cσ = hcc
γh−1

c .

�

Remark 1.2. (i) Note that through conjugation by an element of G, more
precisely h−1

c , we can always normalise the second triple so that for instance, cσ =

cγ
′

.
(ii) Let σ(ζl) = ζα

′

l , σ(ζm) = ζβ
′

m and σ(ζn) = ζγ
′

n . Note that α · α′ ≡ 1 mod l,
β · β′ ≡ 1 mod m and γ · γ′ ≡ 1 mod n. These exponents α′, β′, γ′ ∈ N can be
chosen to be equal, for if r is the least common multiple of the integers l,m, n and
σ(ζr) = ζδr then one also has σ(ζl) = ζδl , σ(ζm) = ζδm and σ(ζn) = ζδn.

In the special case where σ is complex conjugation there is a precise formula
for the action of Gal(Q/Q) on triples

Proposition 1.4. Let (a, b, c) be a hyperbolic triple of generators of G defining
a G−covering (S, f). Then the complex conjugate G−covering (S, f) is defined by
the triple (a−1, ab−1a−1, c−1).
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Proof. We will work here with the unit disc D instead of the upper half-plane.
We observe that if

D/K
Φ̃−−−−→ Sy

yf
D/∆

Φ−−−−→ P1

is the commutative diagram (1.7) defining (S, f) then the covering (S, f) is defined
by the diagram

D/K
Φ̃1−−−−−→ Sy

yf
D/∆

Φ−−−−→ P1

where for a subgroup H of Aut(D) we put H = {h : h ∈ H} and Φ̃1(w) = Φ̃(w).

Note that the function Φ1(w) = Φ(w) = Φ(w) induces the same isomorphism
D/∆ ≃ P1 as Φ. Moreover, since x(w) = ζl ·w and z is conjugate to w 7→ ζn ·w by
means of a real Möbius transformation (see Figure 1.1) we see that x = x−1 and
z = z−1. It follows that ∆ = ∆ and that the epimorphisms

ρ : ∆(l,m, n) −→ G ρ : ∆(l,m, n) −→ G
x 7−→ a x 7−→ a−1

y 7−→ b y 7−→ ab−1a−1

z 7−→ c z 7−→ c−1

are related by ρ(γ) = ρ(γ). We see that K = ker(ρ) and the hyperbolic triple

(a−1, ab−1a−1, c−1) defines the G−covering (S, f). �

Triangle curves and G−coverings are known to be defined over their fields of
moduli ([68]). Proposition 1.3 immediately implies the following

Corollary 1.2. Abelian G−coverings are defined over Q.

Proof. Proposition 1.3 together with the second part of Remark 1.2 imply
that if (a, b, c) is the triple defining an abelian G−covering (S, f) then, for any σ ∈
Gal(Q/Q), the triple defining the covering (Sσ, fσ) is of the form (ak, bk, ck). Now
these two triples differ by the automorphism ψ of G defined by ψ(u) = uk. Hence,
for any σ ∈ Gal(Q/Q) the G−coverings (S, f) and (Sσ, fσ) are equivalent. �

Alternative proofs of this fact have been found by R. Hidalgo ([45]) and B.
Mühlbauer (forthcoming PhD thesis). See also the article by I. Bauer and F.
Catanese [4].

1.5. Triangle curves with covering group G=PSL(2,p)

In this section we find hyperbolic triangle curves with covering group G =
PSL(2, p) = SL(2, p)/{±Id}. These will be used later, in section 3.4, in the con-
struction of our Beauville surfaces.

Recall that if p > 2 is a prime, G is a group of order p(p − 1)(p + 1)/2, and
observe that this expression already shows that it always has elements of orders 2,
3 and p. Conjugacy classes of elements and subgroups of PSL(2, p) are very well
known. They can be found in almost any introductory book on linear groups (see
for example [46] or [27] for an exhaustive exposition).
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Throughout this section we will repeatedly use the following known result,
which can be found for instance in [27], §5.2. If p ≥ 5 is a prime, then the conjugacy
class of an element of PSL(2, p) is determined by its trace, except for elements of
order p which lie in two different classes and always have trace ±2.

Now by the results of section 1.3, the study of G−coverings is equivalent to the
study of triples of generators of G = PSL(2, p). These were studied by Macbeath
in [50]. In order to present the results we need, we consider for any triple (α, β, γ) ∈
F∗
p the set E(α, β, γ) that consists of all triples of elements (A,B,C) of SL(2, p) with

traces α, β and γ respectively, such that their product is the identity. Consequently
we write E(α, β, γ) for the image of E(α, β, γ) in PSL(2, p).

A triple (α, β, γ) is called singular if

α2 + β2 + γ2 − αβγ − 4 = 0

and exceptional if the orders of the elements in the triples of E(α, β, γ) are one of
the following:

(2, 2, n), (2, 3, 3), (3, 3, 3), (3, 4, 4), (2, 3, 4),
(2, 5, 5), (5, 5, 5), (3, 3, 5), (3, 5, 5), (2, 3, 5).

Then Theorems 2 and 3 in [50] can be summarized as follows.

Theorem 1.1 (Macbeath). A triple in E(α, β, γ) generates the whole group
PSL(2, p) if and only if (α, β, γ) is neither singular nor exceptional. In this case:

(i) there are two conjugacy classes of triples in E(α, β, γ) modulo SL(2, p);
(ii) there is one conjugacy class of triples in E(α, β, γ) modulo Aut(SL(2, p)).

To count the effective number of corresponding triples in PSL(2, p) we will use
the following obvious observation.

Lemma 1.3. Let (α, β, γ) and E(α, β, γ) be as above. Then in PSL(2, p)

E(α, β, γ) = E(−α,−β, γ) = E(−α, β,−γ) = E(α,−β,−γ) .
Proof. If we write (A,B,C) for a triple in E(α, β, γ), then clearly

(A,B,C) ∈ E(α, β, γ) ⇐⇒ (−A,−B,C) ∈ E(−α,−β, γ) ⇐⇒
⇐⇒ (−A,B,−C) ∈ E(−α, β,−γ) ⇐⇒ (A,−B,−C) ∈ E(α,−β,−γ) ,

and these four triples project in PSL(2, p) to the same element. �

1.5.1. Type (2,3,n). We will look first for triangle curves – or equivalently,
triples of generators – of type (2, 3, n). Let φ denote Euler’s phi function.

Lemma 1.4. Let p be a prime number p ≥ 5 and n any natural number dividing
either (p− 1)/2 or (p+ 1)/2.

(i) There are φ(n)/2 conjugacy classes of elements of order n in PSL(2, p).
(ii) These are characterized by the trace of any of its elements.
(iii) In fact for every c ∈ PSL(2, p) of order n, the elements ci with gcd(i, n) =

1 and 0 < i < n, provide representatives for all these conjugacy classes;
the elements ci and cn−i lying in the same class.

Proof. The group PSL(2, p) contains two cyclic subgroups of order (p− 1)/2
and (p+ 1)/2, namely the projective image of the subgroups of SL(2, p)

H− =

{
Mλ ≡

(
λ 0
0 λ−1

)
: λ ∈ F∗

p

}
∼= F∗

p
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and

H+ =

{
M(x,y) ≡

(
x εy
y x

)
: x, y ∈ F∗

p, x
2 − εy2 = 1

}
,

where ε is a generator of the cyclic group F∗
p (see for instance [27], §5.2).

Now, every element of PSL(2, p) of order n dividing (p− 1)/2 (resp. (p+1)/2)
is conjugate to an element of H− (resp. H+), which contains φ(n) such elements
of order n. All these matrices have different traces λi + λ−1

i (resp. 2x) except for
mutually inverse elements Mλi

and Mλ−1
i

(resp. M(x,y) and M(x,−y)), which are

therefore conjugate. It follows that there are φ(n)/2 conjugacy classes of elements
of order n in PSL(2, p).

Point (iii) follows from the fact that H− (resp. H+) is cyclic. �

We are now interested in the number of classes of triples of generators of G =
PSL(2, p) of type (2, 3, n) under the action Aut(G). Recall that elements of order
2 and 3 in PSL(2, p) have trace 0 and ±1 respectively.

Lemma 1.5. Let p be a prime number p ≥ 5 and n > 6 any natural number
dividing either (p− 1)/2 or (p+ 1)/2.

(i) There are φ(n) classes of triples of generators of type (2, 3, n) modulo
I(G; 2, 3, n) = G.

(ii) There are φ(n)/2 classes of triples of generators of type (2, 3, n) modulo
A(G; 2, 3, n) = Aut(G) ∼= PGL(2, p).

(iii) The φ(n)/2 classes modulo Aut(G) can be represented by triples of the
form (ai, bi, c

i), where c is an element of order n, ai and bi are suitable
elements of order 2 and 3, respectively, and 1 ≤ i < n/2 with gcd(i, n) = 1.
These, together with another set of φ(n)/2 triples (a′i, b

′
i, c

i) of the same
form, provide representatives for the φ(n) classes modulo G.

(iv) The conjugacy class of the element ci of order n characterizes the conju-
gacy class of the triple modulo Aut(G).

Proof. We know that there are φ(n)/2 conjugacy classes of elements of order
n. For each class C let t ∈ Fp be the trace of any element c ∈ C, which is defined
up to multiplication by ±1. The possible traces of triples of type (2, 3, n) are
therefore (0,±1,±t). For all of them the discriminant t2 − 3 is different from zero,
since otherwise the order of c would be less than or equal to 6. Indeed, by the
Cayley–Hamilton theorem c2 − tc+ Id = 0, and therefore we would have

0 = (c2 − tc+ Id)2 − (2 + 2c2)(c2 − tc+ Id) = −c4 + c2 − Id ,

which implies

0 = c2(−c4 + c2 − Id) + (−c4 + c2 − Id) = −c6 + c4 − c2 − c4 + c2 − Id = −c6 − Id ,

hence c6 = Id in PSL(2, p).
Now by Lemma 1.3 it is enough to study E(0, 1, t) and, since (0, 1, t) is neither

singular nor exceptional, the result follows from Theorem 1.1. �

By the previous two lemmas, for any element c of order n the φ(n)/2 conjugacy
classes of triples of type (2, 3, n) have representatives (ai, bi, c

i), where 1 ≤ i < n/2
with gcd(i, n) = 1. Let us denote by (Ei, fi) the corresponding G−covers. The
curves Ei are pairwise non-isomorphic. This can be seen as follows: suppose that
we had Ei ∼= Ej and set ∆ = ∆(2, 3, n). Then their uniformising groups Ki ⊳∆
and Kj ⊳ ∆ would be conjugate by an element of PSL(2,R), say Kj = αKiα

−1.
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Note that α does not belong to ∆(2, 3, n) since the triples defining the G−coverings
(Ei, fi) and (Ej , jj) are not equivalent modulo G. Conjugating now the inclusion
Kj ⊳∆ by α−1 we get α−1Kjα = Ki ⊳ α−1∆α. But then Ki is normal in both ∆
and α−1∆α. Since ∆(2, 3, n) is a maximal Fuchsian group this is impossible unless
α ∈ ∆(2, 3, n), which is a contradiction.

We claim now that for any k with gcd(n, k) = 1, the curves E1 and Ek are
Galois conjugate. The idea of the proof is contained in the case n = 7, proved by
M. Streit in [63].

Let us consider the action on (E1, f1) of an element σk ∈ Gal(Q/Q) such that

σk(ζn) = ζk
−1

n . By Proposition 1.3 the G−covering (Eσ1 , f
σ
1 ) must correspond to a

triple (haa
α′

h−1
a , hbb

β′

h−1
b , cγ

′

), with γ′ ≡ k (mod n). By the previous lemma this

triple is equivalent to (ak, bk, c
k), and so (Eσ1 , f

σ
1 ) = (Ek, fk). There are therefore

φ(n) options for k, yielding φ(n)/2 different curves Galois conjugate to E1. This
is because for each such k the curves Eσk

1 and E
σn−k

1 are isomorphic since, ck and
cn−k being conjugate, they correspond to equivalent triples.

Hence the G−coverings (Ei, fi) form a complete orbit under the action of
Gal(Q/Q). Finally note that if σ ∈ Gal(Q/Q) is the complex conjugation σ(w) = w
then σ(ζn) = ζ−1

n , and since c1 and c−1
1 are conjugate in PSL(2, p) then Eσ1

∼= E1.
From this fact one can conclude that Q(ζn)∩R = Q(cosπ/n) is the field of moduli
of these curves, and hence a field of definition ([63]).

We have proved the following theorem.

Theorem 1.2. Let p be a prime number p ≥ 5 and n > 6 any natural number
dividing either (p− 1)/2 or (p+ 1)/2.

(i) The φ(n)/2 covers (Ei, fi), for 1 ≤ i < n/2 and gcd(i, n) = 1, are the
only G−coverings with covering group G = PSL(2, p) and type (2, 3, n).

(ii) They correspond to the triples (ai, bi, c
i).

(iii) They form a complete orbit under the action of Gal(Q/Q).
(iv) The curves Ei have genus g = 1

24n (n− 6)p(p− 1)(p+ 1)+ 1 and they are
pairwise non-isomorphic. They can all be defined over Q(cos (π/n)) and
have automorphism group Aut(Ei) ∼= G.

The expression for the genus is a consequence of the Riemann–Hurwitz formula
and the claim about the automorphism group follows from the fact that ∆(2, 3, n)
is a maximal Fuchsian group ([61]).

Example 1.1. For p = 13 and n = 7 the following triples define three Galois
conjugate curves of type (2, 3, 7):

(a1, b1, c) =

((
8 3
0 5

)
,

(
1 8
8 0

)
,

(
0 1
12 6

))
,

(a2, b2, c
2) =

((
0 12
1 0

)
,

(
6 12
4 6

)
,

(
12 6
7 9

))
,

(a3, b3, c
3) =

((
12 1
11 1

)
,

(
0 10
9 1

)
,

(
7 9
4 9

))
.

Any other triple (a′, b′, c′) of type (2, 3, 7) can be mapped by an automorphism of
PSL(2, 13) to one of these, depending on the conjugacy class of c′. These three
curves are Hurwitz curves of genus 14, i.e. curves S whose automorphism group
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reaches the Hurwitz bound |Aut(S)| ≤ 84(g − 1). They are defined over the num-
ber field Q(cosπ/7) and they are Galois conjugate under the action of any Galois
element satisfying ζ7 7→ ζ27 and ζ7 7→ ζ37 respectively ([63]).

1.5.2. Type (p,p,p). We focus now on triples of type (p, p, p) in the groups
G = PSL(2, p) for p > 5.

Lemma 1.6. Let p > 5 be a prime number.

(i) There is only one class of triples of generators of type (p, p, p) modulo
Aut(G) < A(G; p, p, p), which is represented by

u =

(
−1 1
−4 3

)
, v =

(
3 −4
4 −5

)
, w =

(
1 1
0 1

)
.

(ii) Modulo I(G; p, p, p) there are two classes of triples of generators of type
(p, p, p), represented by elements of the form (u, v, w) and (u′, v′, wε),
where ( εp ) = −1, i.e. ε is not a quadratic residue modulo p and there

exists ψ ∈ Aut(G) \ Inn(G) such that (u′, v′, wε) = ψ(u, v, w).

Proof. It can be easily checked that u, v, w are elements of order p whose
product is the identity. Moreover, recall that all triples of type (p, p, p) have traces
of the form (±2,±2,±2). By Lemma 1.3 we can consider just the cases (2, 2, 2)
and (2,−2, 2), but only the latter is neither singular nor exceptional, and therefore
it follows from Theorem 1.1 that (u, v, w) is the only triple of generators of type
(p, p, p) modulo Aut(G).

It also follows from the same theorem that there are two such triples of gener-
ators modulo G and, since for any ε which is not a quadratic residue modulo p the
element wε is not conjugate to w, we can suppose that these two classes of triples
of generators are represented by (u, v, w) and (u′, v′, wε). �

Now take the G−covering (E, f) corresponding to the triple of generators
(u, v, w) above. Lemma 1.6 implies that (E, f) ∼= (Eσ, fσ) for any σ ∈ Gal(Q/Q).
This means that the field of moduli of E is Q, and since E is a triangle curve, Q is
a field of definition as well.

Theorem 1.3. For each prime number p > 5 there is a unique G−covering
(E, f) of type (p, p, p) with G = PSL(2, p). Moreover the following properties hold:

(i) the G−covering (E, f) can be defined over Q;
(ii) E has genus g = 1

4 (p+ 1)(p− 1)(p− 3) + 1;
(iii) the automorphism group Aut(E) is isomorphic to PSL(2, p)×S3.

Proof. The formula for the genus is a consequence of the Riemann–Hurwitz
formula. After the comment preceding the statement of the theorem the only part
left to prove is the one regarding the automorphism group. Let K be the Fuchsian
group uniformising the curve E, i.e. the kernel of the epimorphism ρ : ∆(p, p, p) −→
PSL(2, p) defined by

ρ : ∆(p, p, p) −→ PSL(2, p)
x 7−→ u
y 7−→ v
z 7−→ w

where x, y, z are the generators of ∆(p, p, p) chosen in (1.1), and u, v, w are as in
Lemma 1.6.
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It is well-known that the group ∆(p, p, p) injects into the maximal triangle
group ∆(2, 3, 2p) as a normal subgroup of index 6. This injection can be realized

geometrically as the inclusion map of ∆(p, p, p) in the triangle group ∆̃(2, 3, 2p)

associated to one of the six triangles T̃ = T̃ (2, 3, 2p) of angles π/2, π/3, π/2p in

which T (p, p, p) is naturally subdivided (see Figure 1.3). Note that T̃ = α(T ), and

hence ∆̃(2, 3, 2p) = α∆(2, 3, 2p)α−1, for some α ∈ PSL(2,R).
Now we consider the group homomorphism defined by

ρ̃ : ∆̃(2, 3, 2p) −→ PSL(2, p)×S3

x̃ 7−→ x′ = (X,µ)
ỹ 7−→ y′ = (Y, ν)
z̃ 7−→ z′ = (Z, µν)

where:

• x̃, ỹ, z̃ are the generators of ∆̃(2, 3, 2p) of orders 2, 3 and 2p depicted in
Figure 1.3;

• X =

(
1 −1
2 −1

)
, Y =

(
−1 p+3

2
−2 2

)
and Z =

(
1 p+1

2
0 1

)
;

• µ, ν are generators of S3 such that µ2 = ν3 = (µν)2 = 1.

Notice that the generators x, y, z of ∆(p, p, p) are related to the generators x̃, ỹ, z̃

of ∆̃(2, 3, 2p) by

x = ỹz̃2ỹ−1 = x̃z̃2x̃−1 ,

y = ỹ−1z̃2ỹ ,

z = z̃2 .

This can be seen by checking that the fixed points of z̃2, ỹz̃ỹ−1 and ỹ−1z̃2ỹ are
v∞, ỹ(v∞) = v0 and ỹ−1(v∞) = v1 respectively (see Figure 1.3).

◦

◦ ◦
x

z

y

◦ ◦

◦

x̃

z̃
ỹ

T̃

Figure 1.3. Fundamental domains and generators for the groups

Γ(p, p, p) and Γ̃(2, 3, 2p) (p = 5).

Now we point out the following facts:

• The rule ρ̃ certainly defines a homomorphism, since ord(x′) = 2, ord(y′) =
3, ord(z′) = 2p and x′y′z′ = Id.
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• The restriction of ρ̃ to ∆ = ∆(p, p, p) coincides with ρ. This is because of
the following identities:

ρ̃(x) = y′z′2y′−1 = x′z′2x′−1 = (u, Id)

ρ̃(y) = y′−1z′2y′ = (v, Id)

ρ̃(z) = z′2 = (w, Id)

As a consequence ρ̃ is an epimorphism. In fact it is easy to see that the
subgroup ρ̃(∆(p, p, p)) = G together with the elements ρ̃(x̃) = x′ and
ρ̃(ỹ) = y′ already generate a group in which G has index at least 6.
• In particular K < ker(ρ̃) and since

[∆̃(2, 3, 2p) : ∆(p, p, p)] = [PSL(2, p)×S3 : PSL(2, p)] ,

it follows that K = ker(ρ̃). Moreover, since ∆̃(2, 3, 2p) is a maximal

triangle group it also follows that ∆̃(2, 3, 2p) equals N(K), the normaliser
of K in PSL(2,R).

We conclude that Aut(E) ∼= N(K)/K ∼= PSL(2, p)×S3. �

The general study of the extendability of the automorphism group of triangle
curves has been considered by Bujalance, Cirre and Conder (see [13], Thm. 5.2).

Example 1.2. In the particular case p = 7 the two conjugacy classes of triples
of type (7, 7, 7) are represented by

u =

(
6 1
3 3

)
, v =

(
3 3
4 2

)
, w =

(
1 1
0 1

)
,

and

u−1 =

(
3 6
4 6

)
, v′ =

(
6 0
3 6

)
, w−1 =

(
1 6
0 1

)
,

which are conjugate under the element α =
(
6 1
0 1

)
∈ PGL(2, 7) ∼= Aut(PSL(2, 7)).

We will write (D, f) for the corresponding G−covering.

1.5.3. Type (3,3,4) in PSL(2,7). We will focus our attention now on triples
of type (3, 3, 4) in G = PSL(2, 7). It can be found by computational means (e.g.
with MAGMA) that up to conjugation in PSL(2, 7) there are four such triples,
namely

(a1, b1, c) =

((
1 5
4 0

)
,

(
2 0
3 4

)
,

(
0 1
6 3

))
,

(a2, b2, c) =

((
0 6
1 6

)
,

(
5 1
4 1

)
,

(
0 1
6 3

))
,

(a′1, b
′
1, c) =

((
1 3
2 0

)
,

(
4 0
2 2

)
,

(
0 1
6 3

))
,

(a′2, b
′
2, c) =

((
5 1
4 1

)
,

(
2 6
0 4

)
,

(
0 1
6 3

))
.
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On the other hand, in PGL(2, 7) ∼= Aut(G) there are two non-equivalent triples
of type (2, 3, 8), namely

(r1, s1, t1) =

((
3 3
2 4

)
,

(
2 0
3 4

)
,

(
5 5
2 6

))
,

(r2, s2, t2 = t51) =

((
2 0
4 5

)
,

(
6 4
2 4

)
,

(
6 1
6 2

))
.

Parts (iii), (iv) and (v) of the following theorem are contained in a paper by
M. Conder, G. Jones, M. Streit and J. Wolfart ([18]) and the two remaining ones
could be easily deduced from them. Since they consider a wide range of groups and
types, their methods are much more sophisticated than ours, so we provide here an
ad hoc proof for the case we are interested in.

Theorem 1.4. The following statements hold.

(i) The G−coverings (D1, f1) and (D2, f2), defined by the triples (a1, b1, c)
and (a2, b2, c) respectively, are the only two G−coverings of type (3, 3, 4)
and covering group PSL(2, 7), up to isomorphism.

(ii) The G−coverings (D′
1, h1) and (D′

2, h2), defined by the triples (r1, s1, t1)
and (r2, s2, t2) respectively, are the only two G−coverings of type (2, 3, 8)
and covering group PGL(2, 7), up to isomorphism. Moreover, D′

1 and D′
2

are non-isomorphic curves.
(iii) D1

∼= D′
1 and D2

∼= D′
2. In particular D1 and D2 are not isomorphic.

Both curves have genus 49.
(iv) Let σ ∈ Gal(Q/Q) satisfy σ(ζ8) = ζ58 . Then Dσ

1 = D2.

(v) D1 and D2 are defined over Q(
√
2). In particular D1

∼= D1 and D2
∼= D2.

Proof. (i) The triples (a1, b1, c) and (a′1, b
′
1, c) (resp. (a2, b2, c) and (a′2, b

′
2, c))

are conjugate by the element
(
4 5
2 5

)
(resp.

(
1 6
1 5

)
), so they are equivalent under the

action of PGL(2, 7) ∼= Aut(PSL(2, 7)). However (a1, b1, c) and (a2, b2, c) are not
conjugate in PGL(2, 7).

(ii) The G−coverings D′
1 and D′

2 correspond to the inclusion of certain surface
normal subgroups K1,K2 < ∆(2, 3, 8). We claim that not even the curves D′

1

and D′
2 are isomorphic. If they were there would exist an α ∈ PSL(2,R) such that

K2 = αK1α
−1. But thenK2 would be normal both in ∆(2, 3, 8) and α∆(2, 3, 8)α−1,

and since ∆(2, 3, 8) is a maximal Fuchsian group ([61]) this can only occur if
α ∈ ∆(2, 3, 8). But K1 and K2 are not conjugate in ∆(2, 3, 8) because their corre-
sponding defining triples are not equivalent.

(iii) In a way similar to the case of ∆(p, p, p) < ∆̃(2, 3, 2p) in the proof of Theo-

rem 1.3, the group ∆(3, 3, 4) is included in the triangle group ∆̃(2, 3, 8) associated to

the triangle T̃ = T̃ (2, 3, 8) in Figure 1.4. Again T̃ = α(T ) for some α ∈ PSL(2,R),

and hence ∆̃(2, 3, 8) = α∆(2, 3, 8)α−1.
Now consider the following diagram

K̃ →֒ ∆̃(2, 3, 8)
ρ̃−−−−→ PGL(2, 7)x

x
K →֒ ∆(3, 3, 4)

ρ−−−−→ PSL(2, 7)
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where the vertical arrows are the natural inclusions, K̃ = ker ρ̃, K = ker ρ and the
two epimorphisms ρ and ρ̃ are given by

ρ : ∆(3, 3, 4) −→ PSL(2, 7) ρ̃ : ∆̃(2, 3, 8) −→ PGL(2, 7)
x 7−→ a1 x̃ 7−→ r1
y 7−→ b1 ỹ 7−→ s1
z 7−→ c z̃ 7−→ t1

where x, y, z and x̃, ỹ, z̃ are the generators of ∆(3, 3, 4) and ∆̃(2, 3, 8) respectively
provided by the rotations depicted in Figure 1.4 below.

The following obvious identities show that this is a commutative diagram:

y = ỹ , z = z̃2 (see Figure 1.4) and
b1 = s1 , c = t21 in PGL(2, 7).

◦

◦ ◦
x

z

y ◦

◦

◦
x̃ z̃

ỹ

T̃

Figure 1.4. Fundamental domains and generators for the groups

∆(3, 3, 4) and ∆̃(2, 3, 8).

Therefore it is clear that K = K̃ ∩∆(3, 3, 4). Now since [∆̃(2, 3, 8) : ∆(3, 3, 4)]

equals [PGL(2, 7) : PSL(2, 7)] it follows that K̃ = K and D1
∼= D′

1. It can be
argued in the same way to deduce that D2

∼= D′
2. Since we have already proved

that D′
1 6∼= D′

2, this implies D1 6∼= D2.
The statement about the genus follows from the Riemann–Hurwitz formula.

(iv)We note now that the conjugacy classes of (r1, s1, t1) and (r2, s2, t2) in PGL(2, 7)
are determined by the conjugacy classes in PGL(2, 7) of their elements of order 8
(t1 and t2 = t51 respectively). Therefore applying Proposition 1.3 with an element
σ ∈ Gal(Q/Q) such that σ(ζ8) = ζ58 we can conclude that D′σ

1
∼= D′

2, and therefore
Dσ

1
∼= D2.

(v) We have already mentioned the fact that triangle curves are defined over their
field of moduli. By the comments in the proof of the previous point, any Galois
element fixing the field Q(ζ8) belongs to the inertia groups ID1 and ID2 . Moreover,
by Proposition 1.4 the curve D′

1 = D1 (resp. D′
2 = D2) is defined by the triple

(r−1
1 , r1s

−1
1 r−1

1 , t−1
1 ) (resp. (r−1

2 , r2s
−1
2 r−1

2 , t−1
2 )). Since t1 and t−1

1 (resp. t2 and

t−1
2 ) lie in the same conjugacy class, we deduce that D1

∼= D1 (resp. D2
∼= D2),

and so complex conjugation belongs also to both inertia groups.
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As a consequence the field of moduli of both D1 and D2 is contained in Q(ζ8)∩
R = Q(

√
2). Since by points (iii) and (iv) this field must be a non-trivial extension

of Q, we deduce that Q(
√
2) is the field of moduli, hence the minimum field of

definition of both D1 and D2. �

Remark 1.3. Point (v) explains why, although the curves D1 and D2 are
determined by (3, 3, 4) triples, in order to distinguish them one needs to work with
triples of type (2, 3, 8). Since the action of a Galois element σ on ζ3 and ζ4 does not

determine σ(
√
2), the effect of Galois conjugation could not be seen in the (3, 3, 4)

triples.





CHAPTER 2

Uniform dessins

“Arithmétique! Algèbre! Géométrie! Trinité grandiose! Triangle lumineux!
Celui qui ne vous a pas connues est un insensé!”

— Comte de Lautréamont, Les chants de Maldoror

The correspondence between (equivalence classes of) dessins d’enfants and (iso-
morphism classes of) algebraic curves defined over Q is not bijective, given a Rie-
mann surface defined over Q, there are many different dessins d’enfants on S. How-
ever, the question of when two different dessins d’enfants live on the same surface
is too wide to answer in its full generality, so one has to restrict to certain families
of dessins.

In [35] it was considered the case of regular dessins of the same type (see
also [30]). Let us remind that a regular dessin of type (l,m, n) on a surface S
arises as the normal inclusion of a group K uniformising S in a triangle group
∆(l,m, n) and, therefore, the situation of several regular dessins of the same type
on S corresponds to the normal inclusion ofK in different conjugate triangle groups
of type (l,m, n). Girondo and Wolfart proved that if this happens, these inclusions
are induced by inclusions between triangle groups.

The next family of dessins that one could study is that of uniform dessins. Re-
call that a uniform dessin of type (l,m, n) on a surface S arises as the inclusion – not
necessarily normal – of a group K uniformising S in a triangle group ∆(l,m, n). As
a consequence, the existence of several uniform dessins of type (l,m, n) corresponds
to the inclusion of K in different triangle groups of type (l,m, n)

To put the problem in a precise form we observe first that a surface group K
contained in a triangle group ∆ is contained in all triangle groups ∆′ containing
∆ (and maybe also in some triangle subgroups of ∆), all these inclusions inducing
dessins of different types on the surface S. All possibilities of such inclusions are well
known by work of Singerman [61], so one can concentrate on dessins of the same
type (l,m, n), i.e. on the following question. Let K be a Fuchsian surface group
contained in a triangle group ∆(l,m, n): which and how many different conjugate
groups α∆α−1, α ∈ PSL(2,R), contain K as well?

Note that one could consider the following similar question. Let ∆ be a Fuchsian
triangle group and let K be a finite index subgroup: for which and for how many
α ∈ PSL(2,R) do we have α−1Kα < ∆?

These two questions are not equivalent only when α belongs either to N(∆) or
to N(K), the normalisers of ∆ and K in PSL(2,R). However, if α ∈ N(∆) the two
inclusions K,α−1Kα < ∆ correspond to renormalised dessins, and if α ∈ N(K),
conjugation by α induces an isomorphism of the curve, which in turn induces an

33
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isomorphism between the dessins corresponding toK < ∆ andK < α∆α−1. There-
fore, if one wants to study the problem of non-isomorphic dessins of the same type
on the same surface not related by renormalisation, then both questions are in-
terchangeable. We will thus focus on the first version, which is more natural.
Moreover, since conjugation of K by an element of N(∆) induces a renormalisa-
tion of the dessin, we will only count residue classes α ∈ PSL(2,R)/N(∆). Let
us stress here that, in view of the question we are dealing with, two dessins are
considered different if they correspond to different Belyi functions. Whether they
are isomorphic or not is a completely different question.

If K is included in both ∆ and α∆α−1, the element α belongs by definition to
both the commensurator groups of K and of ∆. Now, by the theorem of Margulis
(see section 0.7) the commensurator ∆ = Comm(∆) of a non-arithmetic Fuchsian
group ∆ is a finite extension of ∆ and a Fuchsian group itself. But finite extensions
of triangle groups are known to be triangle groups again, so if ∆ is non-arithmetic,
∆ is itself a triangle group, and consulting Takeuchi’s list of arithmetic triangle
groups [64] and Singerman’s list of inclusion relations [61] it is easy to see that the
index [∆ : ∆] is at most 6. So we have the first part of the following theorem.

Theorem 2.1. Surface groups contained in a non-arithmetic Fuchsian triangle
group ∆ define isomorphic surfaces if and only if they are conjugate in a maximal
Fuchsian triangle group ∆ extending ∆. They fall in at most 6 different conjugacy
classes under conjugation by ∆. If K is such a surface group then the number of
triangle groups conjugate to ∆ in which K is included is 1, 3 or 4.

Proof. The second part of the theorem follows from the fact that non-normal
inclusions ∆ < ∆ of non-arithmetic triangle groups occur only with index 3 for
∆(2, n, 2n) < ∆(2, 3, 2n), or 4 for ∆(3, n, 3n) < ∆(2, 3, 3n). �

2.1. Arithmetic surface groups, localisation

Now we concentrate on the remaining case that K and ∆ are arithmetic Fuch-
sian groups, i.e. they are commensurable to a norm 1 groupM1 of a maximal order
M in a quaternion algebra A defined over a totally real number field k and having
precisely one embedding into the matrix algebraM2(R). The situation here is quite
different, as indicated already by the analogous question for normal subgroups in
Theorem 3 of [35]. By [64] we know which triangle groups can be identified with
the norm 1 group of a maximal order, and most of the arguments will be applied
to these cases.

Since we have to work in the quaternion algebra A it is often necessary to
replace all Fuchsian groups K above with their preimages K̂ in SL(2,R). However,
if it is clear from the context where the groups are situated, we will often omit the
hat to simplify the notation.

We consider now the norm 1 groupM1 (which in most cases is a triangle group
itself [64]) and restrict our attention to common finite index subgroupsK ofM1 and
β−1M1β and the possible conjugators β in this configuration. Clearly, conjugation
by such a β induces an automorphism of the quaternion algebra, therefore the
Skolem–Noether theorem allows to replace β with a more convenient element α ∈ A.
By multiplication with a denominator in the integers of k we can even suppose α
to be in the maximal orderM.
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Theorem 2.2. LetM1 be the norm 1 group of a maximal orderM and suppose
that β ∈ SL(2,R) is such thatM1∩β−1M1β has finite index inM1 and β−1M1β.
Then β can be replaced with a scalar multiple α ∈ GL(2,R)+ ∩M ⊂ A.

Under these conditionsM1 ∩α−1M1α is the norm 1 group of an Eichler order
M∩α−1Mα. The index ofM1∩α−1M1α inM1 gives a lower bound for [M1 : K]
where K denotes a surface group contained in bothM1 and α−1M1α.

For arithmetic triangle groups one has the additional advantage that all quater-
nion algebras in question have type number 1 ([64], Prop. 3), therefore all maximal
orders are conjugate in A and all Eichler orders are intersections of conjugate max-
imal orders. So counting multiple dessins on H/K amounts to counting maximal

orders containing K̂.
Maximal orders are easier to classify locally, i.e. over local fields, and the type

number 1 property implies that there are bijections between

• prime ideals in the ring of integers Rk of the center k of the quaternion
algebra A
• inequivalent primes elements p in Rk generating these prime ideals (with-
out loss of generality we will suppose p > 0)
• inequivalent discrete valuations v of A
• inequivalent completions Av = Ap,Mv =Mp of the quaternion algebra
and a maximal order with respect to v

Recall that Av is a skew field if and only if p ramifies in A, i.e. if it belongs to
the finite number of discriminant divisors. In this case,Mv is the unique maximal
order of Av, therefore there are no Eichler orders at all. In all other (unramified)
cases we get matrix algebras Av ∼= M2(kv), with maximal order Mv

∼= M2(Rv)
where Rv denotes the ring of integers in the local field kv, i.e. the completion of
Rk in kv. This ring has the unique prime ideal P = pRv, and all Eichler orders are
conjugate to a ring of matrices

{(
a b
c d

)
with a, b, d ∈ Rv , c ∈ Pn

}

for some positive integer n (Pn is the level of the Eichler order). This local Eichler
order is in fact an intersectionMv ∩α−1Mvα of two maximal orders conjugate by
some α ∈ M∗

v

(
p 0
0 1

)
⊂M2(Rv).

The study of the local situation will be crucial to get global consequences using
global-local arguments.

2.2. The local situation

Suppose that the triangle group ∆ is the norm 1 group of a maximal order
M, and that the surface group K is included in both ∆ and α∆α−1 for some
α ∈ PSL(2,R), so that K is included in the norm 1 group of the Eichler order
E =M∩ αMα−1. The local situation is the following:

• For all valuations v ∈ Ramf (A) the localised algebra Av contains a unique
maximal order, and therefore Ev =Mv = αMvα

−1;
• There is a finite number of v 6∈ Ramf (A) such thatMv 6= αMvα

−1.

Local Eichler orders in M2(kv) are easy to study thanks to the tree structure
of the maximal orders, mentioned in section 0.7. Recall that, if the valuation v
corresponds to a prime ideal p, vertices in the tree correspond to maximal orders
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and two vertices are joined by an edge if and only if the corresponding maximal
orders are conjugate under an element whose norm is in R∗

kp. The chain of inclusions

Mv >Mv ∩
(
p 0
0 1

)−1Mv

(
p 0
0 1

)
> . . . >Mv ∩

(
p 0
0 1

)−nMv

(
p 0
0 1

)n

implies that a local Eichler order Ev =Mv ∩ αMvα
−1 is contained in all the max-

imal orders corresponding to vertices lying in the path joiningMv and αMvα
−1.

IfMv and αMvα
−1 are neighbours we will say that E is an Eichler order of level

P and, more generally, if the path joining the two maximal orders has length n, we
will say that E is an Eichler order of level Pn.

We begin with the simplest case, which is local Eichler orders of level P . Let q
be the number of elements in the residue field Rv/P ∼= Fq. We have the following
result.

Lemma 2.1. LetMv =M2(Rv) be a local maximal order in Av =M2(kv). The
norm 1 group Φ0 = Φ0(P) of an Eichler orderMv ∩αMvα

−1 of level P has index
q + 1 in M1

v. Moreover, Mv and αMvα
−1 are the only maximal orders in which

Φ0 is contained.

Proof. If one considers the canonical action of M1
v = M2(Rv) on the pro-

jective line P1(Fq) given by reduction modulo P , the groups Φ0 correspond to the
subgroups fixing one point. There are therefore q+1 of them, and this number co-
incides with the index. If the Eichler order was included in further maximal orders
apart fromMv and αMvα

−1, it would correspond to a longer path in the tree of
maximal orders, which is a contradiction since it has level P . �

Let O ⊂ A be a maximal order in the quaternion k−algebra A and v 6∈ Ram(A)
an unramified valuation of A corresponding to the prime p, such thatOv =M2(Rv).

Let E(p) denote the local Eichler orderMv∩
(
p 0
0 1

)−1Mv

(
p 0
0 1

)
, whose norm 1 group

we have denoted by Φ0(P). We will write ∆0(p) for the norm 1 group of the Eichler
order E in A that corresponds via the bijection in Lemma 0.1 to the family

{(Ev) : Ev = E(p) if v = p, and Ev = Op, if v 6= p}.
In the particular case where A = M2(k) and Rk is a principal ideal domain all
maximal orders are conjugate, and we can suppose that O = M2(Rk). Therefore
∆0(p) coincides with the congruence subgroup

∆0(p) =

{(
a b
c d

)
∈ ∆ ⊂M2(Rk) : c ≡ 0 mod p

}
.

We have the following necessary condition for the existence of at least two
different uniform dessins of the same type on a Riemann surface of genus > 1. This
result will be crucial for the construction of low genus examples.

Theorem 2.3. Let K be an arithmetic Fuchsian surface group contained in
the triangle group ∆ = ∆(l,m, n), and suppose that ∆ is the norm 1 groupM1 in
a maximal order M of a quaternion algebra A defined over the totally real field k
with ring of integers Rk. The group K is contained in more than one triangle group
of type (l,m, n) if and only if K is contained in a group conjugate in ∆ to ∆0(p),
where p is a prime of k not dividing the discriminant of A.

Proof. Suppose first that K < ∆ ∩ α∆α−1 for some α ∈ PSL(2,R). We can
suppose α ∈ A by the Skolem–Noether Theorem, and then by Lemma 0.1 there
exists at least one valuation p 6∈ Ram(A) such that Mp 6= αMpα

−1. For this
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valuation, we can suppose modulo conjugation that Mp ∩ αMpα
−1 ⊂ E(p), and

therefore K < ∆ ∩ α∆α−1 < ∆0(p).
The converse follows directly from the definitions. �

The following lemma describes the norm 1 groups of the intersections of local
Eichler orders of level P .

Lemma 2.2. Let Mv = M2(Rv) be a local maximal order in Av = M2(kv).
Now we consider M1

v and its subgroups as subgroups of PSL(2, Rv), i.e. modulo
±Id. Then

(i) The norm 1 group Φ0
0 = Φ0

0(P) of the intersection of two Eichler orders of
level P has index q(q+1) inM1

v. Moreover, Φ0
0 is contained in 3 different

maximal orders if q > 3, 5 if q = 3 and 4 if q = 2.
(ii) The norm 1 group Φ(P) of the intersection of more than two Eichler

orders of level P is the principal congruence subgroup modulo P of M1
v,

a normal subgroup ofM1
v of index 1

2q(q
2 − 1) (omit the denominator 2 if

q is a 2−power). It is the intersection of all such Eichler orders of level
P and is included in q + 2 different maximal orders.

Proof. If we consider again the canonical operation ofM1
v on the projective

line P1(Fq), the groups Φ0
0 correspond to the elements fixing two points. If more

than two points are fixed, automatically all points of the projective line are fixed,
hence the case in (ii) already gives the principal congruence subgroup.

The cases q = 2 and 3 play a special role because for them Φ0
0(P) = Φ(P):

recall that we see them as projective groups, and since the determinants are 1,
in the case of small q all matrices in Φ0

0(P) are congruent modP to ± the unit
matrix.

For the calculation of the indices one may consult [65] p. 109 or mimic a proof
from any book about modular forms. Alternatively one may consider the groups
involved as the stabilizers of one point, two points or the whole projective line,
and then the index is given by the number of elements in the orbit of the fixed
points. �

In a similar way to the case of ∆0(p) and Φ0(P), we can define the principal
congruence subgroup ∆(p) as the subgroup of ∆ whose localisation in p coincides
with Φ(P). The existence and uniqueness of such a subgroup is granted by the
Strong Approximation Theorem (see for example [65] or [51]), which is an extreme
version of the Chinese remainder theorem for certain matrix groups and whose
formal statement exceeds the purposes of this thesis. In the particular case where
A =M2(k) we can again suppose that O =M2(Rk) and therefore

∆(p) =

{(
a b
c d

)
≡

(
1 0
0 1

)
mod p

}
.

Lemma 2.3. For integers n > 1 there are qn−1(q + 1) different local Eichler
ordersMv∩α−1Mvα of level Pn. Their norm 1 groups Φ0(Pn) have index qn−1(q+
1) in M1

v. The intersection of all these norm 1 groups is the principal congruence

subgroup Φ(Pn), which is included in (q+1)(qn−1)
q−1 + 1 different maximal orders.

Proof. To prove that there are precisely qn−1(q + 1) such Eichler orders of
level Pn with norm 1 group Φ0(Pn) one may just count paths of length n in the tree
of maximal orders, with one end fixed in the vertexMv. For the index formula one
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may use the same argument of the previous Lemma, this time defining an action of
M1

v on the “fake projective line” P1
m over the residue class ring Rk/p

m ∼= Rv/Pm,
which is the set of pairs of residue classes, not both in pRk/p

m, modulo the unit
group of this residue class ring (see also [65] p. 55).

The intersection of all Eichler orders of level Pn is then included in all the
maximal orders at distance n fromMv. �

As an illustration for the result concerning the principal congruence subgroups,
we show in Figure 2.1 the picture of the subtree for Φ(p2) in the case q = 7. We
can define global principal congruence subgroups ∆(pn) of higher level in the same
way as above.

Figure 2.1. Subtree for Φ(p2) in the local algebra Ap for q = 7

2.3. Global consequences

To understand Theorem 2.3 and construct examples in low genus, suppose that
K < ∆0(p) for some p 6∈ Ram(A). This group ∆0(p) is always contained in the so
called Fricke extension ∆Fr

0 (p) which, in the case of A = M2(k), is the index two
extension of ∆0(p) by the element

α =
1√
p

(
0 p

−1 0

)
∈ PSL(2,R),

where p is chosen to be totally positive. This element clearly normalises ∆0(p), but
not ∆. The action induced by conjugation on ∆0(p) is called the Fricke involution.
As a consequence the group K < ∆0(p) is included in both ∆ and α∆α−1, yielding
two different uniform dessins in H/K. In the ramified case, the Fricke involution

can be seen in the localised algebra Ap as the element
(

0 1/p
−1 0

)
, which interchanges

by conjugationMv and
(
p 0
0 1

)−1Mv

(
p 0
0 1

)
, and therefore fixes E(p).

Now we will concentrate on a series of striking examples. Take ∆ of signature
(2, 3, 7). According to [64] this is the norm 1 group of a maximal order M in a
quaternion algebra A over the cubic field k = Q(cos 2π

7 ).
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It is well known that Hurwitz curves are uniformised by normal subgroups K of
the triangle group ∆(2, 3, 7) and that, in particular, one has Aut(S) ∼= ∆(2, 3, 7)/K.
A classical theorem by Macbeath ([50]) shows that PSL(2,Fq) is a Hurwitz group
exactly in the following cases

(i) q = 7,
(ii) q = p prime for p ≡ ±1 mod 7,
(iii) q = p3 for p prime and p ≡ ±2 or ± 3 mod 7.

Accordingly, the corresponding Riemann surfaces are usually known as Macbeath–
Hurwitz curves.

It was proved in [19] by A. Dzǎmbić that all Macbeath-Hurwitz curves can be
constructed arithmetically as follows. The triangle group ∆(2, 3, 7) is the norm 1
group of a maximal order in the quaternion A over the field k = Q(cosπ/7) which is
ramified exactly over the two non-trivial Archimedean valuations of k. Any rational
prime p defines an ideal pRk in Rk such that

(i) if p = 7 then p is ramified and pRk = p3 for a prime ideal p ⊂ Rk of norm
q = N(p) = 7;

(ii) if p ≡ ±1 mod 7 then p splits, i.e. pRk = p1p2p3 for prime ideals
p1, p2, p3 ⊂ Rk of norm q = N(pi) = p;

(iii) if p ≡ ±2 or ± 3 mod 7 then p is inert, i.e. pRk is a prime ideal in Rk of
norm q = N(p) = p3.

For every prime p in Rk we can define the subgroup of matrices of ∆(2, 3, 7) con-
gruent to the identity modulo p. This is a normal torsion-free subgroup of ∆(2, 3, 7)
with quotient group isomorphic to PSL(2,Fq) where q = N(p), yielding therefore a
Macbeath-Hurwitz curve.

The first cases are:

• Klein’s quartic. Its surface group is ∆(p) for a prime p dividing 7, ramified
of order 3 and of residue degree 1 in the extension Q(cos 2π

7 )/Q. With
q = 7 we see that Klein’s quartic has 8 conjugate uniform dessins of type
(2, 3, 7) plus the usual regular one.
• Macbeath’s curve of genus 7 with automorphism group PSL(2,F8) has the
surface group ∆(2) for the prime p = 2, inert and of residue degree 3 in
the extension Q(cos 2π

7 )/Q. With q = 8 one has 9 uniform dessins plus a
regular one on the curve.
• Three non-isomorphic curves in genus 14 whose automorphism groups
are isomorphic to PSL(2,F13) and whose surface groups are the principal
congruence subgroups ∆(pj), j = 1, 2, 3 for the (completely decomposed)
primes pj dividing 13. Their residue degree is 1, hence one has q+1 = 14
uniform dessins of type (2, 3, 7) on each curve plus a regular one.

All dessins mentioned here are clearly not renormalisations of each other since the
signature consists of three different entries. On the other hand, in all these cases
we have one regular dessin and q+1 uniform non-regular ones which form an orbit
under the automorphism group of the curve: the q+1 norm 1 groups of type ∆0(p)
are conjugate under the action of ∆ (in other words, the q+1 Eichler orders of level
P form a ∆−invariant set), so these dessins are equivalent under automorphisms
of the curve.
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One can consider the growth of the maximal number of uniform dessins on
surfaces H/K, as a function of the index [∆ : K] in a given triangle group. Global-
local arguments yield the following bound.

Theorem 2.4. Let the Fuchsian group ∆ be the norm 1 group of a maximal
order in a quaternion algebra. For each positive integer m > 0, the maximum
number of conjugates of ∆ in which any Fuchsian group K < ∆ of index at most
can be included is O( 3

√
m) and this upper bound is optimal in the following sense.

There are sequences of surface groups Kn < ∆ with indices [∆ : Kn] → ∞ such
that, if we write dn for the number of all residue classes α ∈ PSL(2,R)/N(∆) with
the property Kn ⊂ α∆α−1, we have

lim
n→∞

dn
3
√
2[∆ : Kn]

= 1.

The proof of this result follows from considering local bounds and applying
a local-global argument based on the Strong Approximation Theorem. For the
sequence Kn one may take any sequence of principal congruence subgroups ∆(p)
with prime ideals P = pRv such that Rk/p ∼= Fq, with q → ∞. Observe that only
finitely many among the Kn can have torsion.

However, in these examples we have only the rather modest number of two
essentially different (non-isomorphic) dessins of the same type. Nevertheless, re-
placing these congruence groups with subgroups of small index we can remove
automorphisms such that most of the uniform dessins found here become inequiv-
alent. As a consequence, and describing the growth result given in Theorem 2.4 in
terms of the genus, we get the following corollary.

Corollary 2.1. The number of uniform dessins not equivalent under renor-
malisation or automorphisms on a Belyi surface grows with the genus g at most as
a multiple of 3

√
g, and this bound is optimal.

We refer to [34] for full details of the proofs.

2.4. A geometrical description

We explore now the examples given in section 2.3 in a more geometrical way.

2.4.1. Klein’s quartic. Klein’s quartic is a genus three surface uniformised
by a group K generated by certain side-pairings in the regular 14-gon P with angle
2π/7 (see Figure 2.2). The (black and white) triangles in Klein’s original picture are
related to the triangle group ∆(2, 3, 7) of signature (2, 3, 7) in which K is normally
contained with index 168.

The inclusion K ⊳∆(2, 3, 7) induces a regular Belyi function on K. The corre-
sponding regular dessin D can be easily depicted in P with the help of the triangle
tessellation associated to ∆(2, 3, 7) (see left picture on Figure 2.3).

Now rotate D, or rather its lift to the universal covering D, by an angle 2π/14
around the origin. The graph D′ obtained is compatible with the side-pairing
identifications, hence it is a well defined dessin on the surface. It is rather obvious
that D′ decomposes the surface into 24 heptagons in the same way as D does.
In other words D′ is also a uniform (2, 3, 7) dessin on H/K (see right picture on
Figure 2.3). Note that the rotation that transforms D into D′ does not correspond
to any automorphism of the surface, and in fact both dessins are not isomorphic
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Figure 2.2. Klein’s surface is obtained by the side pairing 1↔ 6,
3↔ 8, 5↔ 10, 7↔ 12, 9↔ 14, 11↔ 2, 13↔ 4.

Figure 2.3. Klein’s regular (2, 3, 7) dessin D and a uniform one D′.

since D′ is not regular (it can be checked that the automorphism group Aut(S)
does not act transitively on the edges of this new dessin).

This existence of a new uniform dessin of type (2, 3, 7) is clear if one studies
all triangle groups in which K is contained. The group K corresponds to ∆(p),
for a prime p dividing 7 in Q(cosπ/7). The surface group K is a normal subgroup
of ∆(2, 3, 7), but it is also contained normally in the group ∆(7, 7, 7) that has
one seventh of the 14-gon as fundamental domain. The corresponding regular
(7, 7, 7)−dessin lies in the border of the polygon: it has one black vertex, one white
vertex, and seven edges. There is even a group ∆(3, 3, 7) lying between ∆(7, 7, 7)
and ∆(2, 3, 7) that defines another regular dessin of type (3, 3, 7). The chain of
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inclusions K < ∆(7, 7, 7) < ∆(3, 3, 7) < ∆(2, 3, 7) means that the corresponding
regular dessins are related by refinement. Moreover, it can be checked that this
group ∆(3, 3, 7) corresponds to ∆0(p), and therefore one has an index two extension
∆Fr

0 (p) = ∆(2, 3, 14). In fact, the full diagram of triangle groups lying above K can
be found looking at Singerman’s inclusion list:

(2.1) ∆(2, 3, 14) ∆(2, 3, 7)

∆(2, 7, 14)

♣♣♣♣♣♣♣♣♣♣♣

∆(3, 3, 7)

▼▼▼▼▼▼▼▼▼▼

∆(7, 7, 7)

◆◆◆◆◆◆◆◆◆◆◆

qqqqqqqqqq

K

♦♦♦♦♦♦♦♦♦♦♦♦

The groups ∆(2, 7, 14) and ∆(2, 3, 14) are the index two (therefore normal)
extensions of ∆(7, 7, 7) and ∆(3, 3, 7) obtained by addition of a new element ρ
(which induces the Fricke involution of ∆0(p)) which is a rotation of angle 2π/14
around the origin. The corresponding dessins of type (2, 7, 14) and (2, 3, 14) are not
regular but only uniform (as already noticed in [62]), and are obtained from those
of types (7, 7, 7) and (3, 3, 7) by colouring all the vertices with the same colour, say
black, and then adding white vertices at the midpoints of the edges.

Conjugation of diagram (2.1) by ρ fixes all the groups except K and ∆(2, 3, 7):

(2.2) ∆(2, 3, 14) ∆(2, 3, 7) ρ∆(2, 3, 7)ρ−1

∆(2, 7, 14)

♣♣♣♣♣♣♣♣♣♣♣

∆(3, 3, 7)

▼▼▼▼▼▼▼▼▼▼▼

♦♦♦♦♦♦♦♦♦♦♦

∆(7, 7, 7)

◆◆◆◆◆◆◆◆◆◆◆

qqqqqqqqqq

K

♣♣♣♣♣♣♣♣♣♣♣♣
ρKρ−1

▼▼▼▼▼▼▼▼▼▼

The inclusion K < ρ∆(2, 3, 7)ρ−1 corresponds to the uniform dessin D′ de-
scribed above. Since the normaliser of K is ∆(2, 3, 7) the inclusion of K in the
triangle group ρ∆(2, 3, 7)ρ−1 is not normal, hence D′ is not regular.

Now we focus in the group ∆(3, 3, 7) lying in the middle of diagrams (2.1)
and (2.2). It is a known fact ([35]) that a given triangle group of type (3, 3, 7) is
contained in precisely two different groups of signature (2, 3, 7), i.e. ∆(2, 3, 7) and
ρ∆(2, 3, 7)ρ−1 in our case. Conversely, any given ∆(2, 3, 7) contains eight different
subgroups of signature (3, 3, 7), all conjugate in ∆(2, 3, 7). From the point of view
of local quaternion algebras, this is a consequence of Lemmas 2.1 and 2.2.
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Let a0∆(3, 3, 7)a−1
0 = ∆(3, 3, 7), a1∆(3, 3, 7)a−1

1 , . . . , a7∆(3, 3, 7)a−1
7 be the 8

subgroups of ∆(2, 3, 7) conjugate to ∆(3, 3, 7), with ai ∈ ∆(2, 3, 7).
If we conjugate diagram (2.2) by ai we get

(2.3) ai∆(2, 3, 14)a−1
i ∆(2, 3, 7) aiρ∆(2, 3, 7)ρ−1a−1

i

ai∆(2, 7, 14)a−1
i

qqqqqqqqqqq

ai∆(3, 3, 7)a−1
i

▼▼▼▼▼▼▼▼▼▼

♦♦♦♦♦♦♦♦♦♦♦

ai∆(7, 7, 7)a−1
i

▼▼▼▼▼▼▼▼▼▼▼

qqqqqqqqqq

K

qqqqqqqqqqqqq
aiρKρ

−1a−1
i

▼▼▼▼▼▼▼▼▼▼

Note that only ∆(2, 3, 7) and K remain fixed by this conjugation, since ai
belongs to ∆(2, 3, 7), the normaliser of K.

The inclusionK < aiρ∆(2, 3, 7)ρ−1a−1
i induces a new uniform (but not regular)

dessin of type (2, 3, 7) on H/K. It is related to the uniform dessin D′ by the
automorphism induced by ai, and to the regular dessin D by a hyperbolic rotation
of angle 2π/14 around the center of certain face of D.

2.4.2. Macbeath’s curve of genus seven. The description of the uniform
(2, 3, 7) dessins on Macbeath curve goes more or less along the same lines as in the
case of Klein’s quartic. Again the surface groupK is included normally in ∆(2, 3, 7).
The role played by the group ∆(3, 3, 7) in Klein’s quartic is played here by ∆(2, 7, 7),
which this time corresponds to ∆0(2). Note that the inclusion ∆(2, 7, 7) < ∆(2, 3, 7)
is also very special (cf. [35]). The number of conjugate subgroups of type (2, 7, 7)
inside ∆(2, 3, 7) is nine, and any given ∆(2, 7, 7) is contained in two different groups
of type (2, 3, 7) (this is again consequence of Lemmas 2.1 and 2.2. The normaliser
of ∆(2, 7, 7) is now a (2, 4, 7)–group obtained by adding a rotation ρ of order 4
around any of the points of order 2 in ∆(2, 7, 7).

This new element does not normalise ∆(2, 3, 7), so conjugation by ρ gives rise
to the second group ρ∆(2, 3, 7)ρ−1 in which ∆(2, 7, 7) is included:

(2.4) ∆(2, 4, 7) ∆(2, 3, 7) ρ∆(2, 3, 7)ρ−1

∆(2, 7, 7)

▼▼▼▼▼▼▼▼▼▼

♦♦♦♦♦♦♦♦♦♦♦

K

qqqqqqqqqqqq
ρKρ−1

❖❖❖❖❖❖❖❖❖❖❖

The inclusion of K inside ∆(2, 3, 7) and ρ∆(2, 3, 7)ρ−1 determines two non
isomorphic dessins on Macbeath’s curve. Once more the second inclusion is not
normal, and accordingly the second dessin is uniform but not regular.

We can proceed in the same way with the other eight (2, 7, 7)–groups contained
inside ∆(2, 3, 7) to get diagrams similar to diagram (2.3). This way we find the nine
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Figure 2.4. Face decomposition associated to regular and uni-
form dessins of type (2, 3, 7) on Macbeath’s surface.

(isomorphic) uniform dessins predicted by the arithmetic arguments of Section 2.3.
There is obviously as well a uniform dessin of type (2, 4, 7), as already noticed
in [62].

2.4.3. Macbeath-Hurwitz curves of genus 14. The third example given
in section 2.3 arises from the consideration of the three (torsion free) groups Ki =
∆(pi) ⊳ ∆(2, 3, 7) for inequivalent primes p1, p2 and p3 dividing 13 in Q(cos π7 ).
These groups correspond to three Galois conjugate curves of genus 14 with a regular
(2, 3, 7) dessin ([63]).

Now for each of these primes, we find ∆0(pi) lying between ∆(pi) and ∆(2, 3, 7).
Its index inside ∆(2, 3, 7) is 14. By Singerman’s method for the determination of
signatures of subgroups of Fuchsian groups ([60]) it can be seen that ∆0(pi) is a
group of signature 〈0; 2, 2, 3, 3〉.

There is again an element ρi in the normaliser of ∆0(pi) that conjugates
∆(2, 3, 7) into a different group. The inclusion of ∆(pi) inside ρi∆(2, 3, 7)ρ−1

i is
no longer normal and gives rise to a non-regular uniform dessin on the same Rie-
mann surface.

Moreover, ∆(2, 3, 7) contains 14 different subgroups conjugate to ∆0(pi). All
of them include ∆(pi), therefore arguing as above we find 14 isomorphic uniform
(2, 3, 7) dessins.

2.5. Uniform dessins in genus 2 surfaces

A complete list of all (isomorphism classes of) uniform dessins in genus 2 is
given in [62]. It is however not obvious if and when two such dessins may belong
to the same surface.

Let us focus on the triangle group ∆ = ∆(2, 3, 9), which corresponds to the
norm 1 group of a maximal order in a quaternion algebra and which contains the
triangle group ∆(3, 3, 9) with index 4. We depict here the diagram of inclusions
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appearing in [64]:

∆(2, 3, 9) ∆(2, 3, 18)

∆(3, 3, 9)

4

❍❍❍❍❍❍❍❍❍

2
✉✉✉✉✉✉✉✉✉

∆(2, 9, 18)

3

❏❏❏❏❏❏❏❏❏

∆(3, 6, 18)

4

❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚❚

∆(9, 9, 9)

3

■■■■■■■■■

2
ttttttttt

The associated quaternion algebra is defined over the cubic field k := Q(cos π9 )
and is unramified. In k we have a ramified prime p | 3 of norm 3 such that
∆0(p) = ∆(3, 3, 9). There has to be an extension of index 2 by the Fricke involution,
and in fact ∆(3, 3, 9) is normalised by the triangle group ∆(2, 3, 18).

Therefore, we have the following chain of inclusions:

∆
4
> ∆0(p)

3
> ∆(p),

where ∆0(p) = ∆(3, 3, 9) and ∆(p) is the principal congruence subgroup of level
p, a Fuchsian group of signature 〈0; 3, 3, 3, 3〉. Moreover, since q = 3 we have
∆(p) ≃ ∆0(p

2).
By the arithmetic theory developed before, the Fricke involution conjugates

∆(2, 3, 9) into another group ρ∆(2, 3, 9)ρ−1 such that:

(2.5) ∆(2, 3, 18) ∆(2, 3, 9) ρ∆(2, 3, 9)ρ−1

∆0(p) = ∆(3, 3, 9)

◗◗◗◗◗◗◗◗◗◗◗◗◗

❧❧❧❧❧❧❧❧❧❧❧❧❧❧

∆(p)

Once again ρ is an extra rotation in ∆(2, 3, 18) = N(∆(3, 3, 9)) of order 2
around a fixed point of order 9. Let us note that conjugation by the Fricke involution
gives precisely the isomorphism between ∆(p) and ∆0(p

2) = ρ∆(p)ρ−1.
Now by Theorem 2.3 every surface group inside ∆(3, 3, 9) will have at least

two (2, 3, 9) dessins. By the list in [62] we know that in genus 2 there are 4
different dessins of this type. For two of them it can be seen, by computing the
monodromies and constructing a fundamental domain, that the Fricke involution is
an automorphism of the surface, and so the two dessins arising from the arithmetic
construction are isomorphic (see also [31]).

The other two are the dual dessins considered in [62], Section 11(d). To find its
surface group we can follow once more Singerman’s procedure, and it can be seen
that it is possible to find a (normal) torsion free subgroup K of index 3 in ∆(p).
The indices [∆(3, 3, 9) : K] = 9 and [∆(2, 3, 9) : K] = 36 tell us that it corresponds
indeed to a genus 2 surface.

One can compute the monodromies of the two dessins induced by ∆(2, 3, 9)
and ρ∆(2, 3, 9)ρ−1 by computer means to check that they are non-conjugate inside
S36 so they are not isomorphic as we already knew. They are not equivalent either
under automorphisms or renormalisation.
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Figure 2.5. Two non isomorphic uniform dessins of type (2, 3, 9)
in the same surface.

By [31] we know that the automorphism group of this surface Aut(H/K) ≃
N(S)/S is generated by the hyperelliptic involution ν and two automorphisms τ
and σ3 of order 2 and 3 respectively. From the arithmetic point of view, we can
even say that 〈K, σ̃3〉 ≃ ∆(p), where σ̃3 denotes the lift of σ3 to H.
The lifts of all these automorphisms lie inside ∆(2, 3, 9), but ν̃, τ̃ , ν̃τ ∈ N(K) do not
belong to ρ∆(2, 3, 9)ρ−1. Conjugation of ρ∆(2, 3, 9)ρ−1 by each of these elements
will determine another (2, 3, 9)-dessin isomorphic to the second one.
The same can be applied to ∆(3, 3, 9) and ∆(2, 3, 18). In particular ∆(3, 3, 9),
ν̃(∆(3, 3, 9))ν̃−1, τ̃(∆(3, 3, 9))τ̃ and ν̃τ (∆(3, 3, 9))(ν̃τ )−1 are the 4 different (3, 3, 9)
groups lying below a given ∆(2, 3, 9) ([35], p.9, Thm.6).

The following diagram of inclusions shows all the dessins (modulo renormali-
sation) in this surface. The notation Gσ stands for conjugation by σ:

(2.6) ∆(2, 3, 18)ντ ∆(2, 3, 18)τ ∆(2, 3, 18)ν ∆(2, 3, 18)

∆(2, 3, 9)ρντ ∆(2, 3, 9)ρτ ∆(2, 3, 9)ρν ∆(2, 3, 9)ρ ∆(2, 3, 9)

∆(3, 3, 9)ντ

✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆
✆

∆(3, 3, 9)τ

✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝
✝

∆(3, 3, 9)ν

✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞

∆(3, 3, 9)

✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟
✟

✉✉✉✉✉✉✉✉✉

N(K)

∆(p)

❏❏❏❏❏❏❏❏❏

❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯❯

❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳❳

✉✉✉✉✉✉✉✉✉

K

✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞
✞

To sum up, there are (up to renormalisation) four different (3, 3, 9) dessins on
the surface H/K studied here, forming one orbit under the automorphism group
N(K)/K ≃ D3×C2 acting on the edges of the subtree given in Figure 2.6. On the
other hand one has four (2, 3, 9) dessins equivalent under the automorphism group
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Figure 2.6. Subtree T (∆p(p)) and the image of the second dessin
under the hyperelliptic involution ν.

plus one stabilized by N(K)/K, corresponding to the mid-vertex of the subtree,
not isomorphic to the others.

Remark 2.1. According to [62] an equation for H/K is y3 = (x− 1)(x3 − 1).
We have found that y2 = x6 + 8x3 + 4 is a hyperelliptic model of this surface.

In low genus there is another theoretical approach to the problem of different
uniform dessins living on the same surface. This method is based on studying the
location in a fundamental domain of the surface of the possible face-centres of dif-
ferent dessins, and the tools used are mainly from hyperbolic geometry. Proceeding
in this way we are able to classify all unicellular (i.e. with only one face) uniform
dessins in genus 2. We sketch here the ideas behind the methodology.

The hyperbolic distances between the fixed points of any two elements in the
conjugacy class of z inside ∆(l,m, n) = 〈x, y, z : xl = ym = zn = xyz = 1〉 form
a discrete set d(l,m, n) = {d1 < d2 < · · · } that does not depend on the choice
of the triangle group within its conjugacy class. We will call d(l,m, n) the set of
admissible distances for the type (l,m, n). These hyperbolic distances were already
used in [9] and [31]. The point is now that, if a uniform dessin D lives on a surface
S = D/K, which is given as a fundamental polygon in D with identified edges,
and a point w ∈ D corresponds to a face center of some other dessin D′, then for
every γ ∈ K, one has dD(w, γ(w)) ∈ d(l,m, n), where dD stands for the hyperbolic
distance on the disc. On the other hand, given K < ∆, any point of D moved
an admissible distance by every transformation in K will be called an admissible
point, since it is a candidate for being the face center of a uniform dessin of type
(l,m, n) on the surface D/K. Since face centers of uniform (l,m, n)-dessins on S
must be detectable as admissible points, we look for points in P that are moved an
admissible distance by (at least) all the side-pairings generating K, and this search
is computer aided. Discerning the true face centers among these admissible points
requires further arguments, mainly on the automorphisms of S.

The results are presented mainly through pictures like the one in Figure 2.7.
The edges and the vertices zi of the fundamental polygon P are labelled counter-
clockwise. The i-th edge joins zi−1 and zi, and the edge 1 is the one intersecting
R+. The hyperbolic midpoint of the i-th edge is denoted by pi, and F

−
(i,j) and F

+
(i,j)
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denote the repelling and attracting fixed points of γ(i,j), the transformation that
sends the i-th edge of P to the j-th one. The arcs joining these two points repre-
sent admissible arcs for γ(i,j), i.e. arcs representing points in D which are moved
an admissible distance.

F−

1,5

F+
1,5

d1

d1

d2

d3
d4

d2
d3
d4

p1

z1

z10

p5

z4

z5

Figure 2.7. Some of the admissible arcs for the side-pairing γ(1,5)
in the particular case (l,m, n) = (5, 5, 5)

Consider the surface S underlying the dessin D of type (2, 4, 12) depicted on
the left side of Figure 2.8. The side-pairing in the fundamental polygon makes it
clear that the surface has a symmetry of order 2, whose lift to D is the complex
conjugation, and we will only focus on the upper-half.

F−

2,4

F−

5,8

F−

6,9

d1

d1
d2
d2

d1

d4d3

F−

1,7

q

Figure 2.8. In S there is a dessin isomorphic to D centered in [q]

It is known (see [31]) that the displacement of the points in a hyperbolic triangle
is bounded from above by the displacement of its vertices. Focusing on the upper
half of the domain, we find that the identification γ(2,4) moves the points z1, z4 and
0 exactly the first admissible distance d1, and the vertices z2 and z3 strictly less
than d1. As a consequence there is no admissible point in the interior of the grey
region delimited by the vertices z1, z2, z3, z4 and 0 in Figure 2.8, though perhaps
z1 and z4 could be admissible points. By the same reason, γ(5,8) allows us to get
rid of the other grey region, except for z6. Now, z1, z4 and z6 all correspond to the
same point on the surface, but z4 can be discarded by looking at the set of points
moved an admissible distance by γ(5,8).

Now we only have to deal with the triangles with vertices at z4, p5, 0, and p1,
z1, 0. In the first one, the only common admissible point for both γ(2,4) and γ(5,8)
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is the one depicted in white in Figure 2.8, that is moved a distance between d2
and d3 by γ(6,9). In the second one there is just one admissible point for γ(2,4) and
γ(1,7), call it q (which is moved a distance d1 by γ(1,7) and γ(2,4), and a distance d4

by γ(6,9)). We can compute its value q =
√
6
6

4
√
3 with hyperbolic methods, relying

on the fact that q is translated a distance d1 by γ(2,4).
Since it can be easily checked that the hyperelliptic involution J does not fix

the point [0], the point [q] must be the face center of a dessin image under J of D,
and therefore isomorphic to it.

Similar arguments regarding admissible distances can be used to study every
Belyi surface of genus 2 admitting a unicellular uniform dessin. One gets the
following result.

Theorem 2.5. Two unicellular uniform dessins of the same type in genus 2
belong to the same surface if and only if they are either dual or isomorphic.

The details of the proof can be found in [33].





CHAPTER 3

Beauville surfaces

“[...] even here, in this region of Three Dimensions, your Lordship’s art may make the

Fourth Dimension visible to me; just as in the Land of Two Dimensions my Teacher’s
skill would fain have opened the eyes of his blind servant to the invisible presence of a

Third Dimension, though I saw it not.”

— Edwin A. Abbott, Flatland: A Romance of Many Dimensions

In this chapter we will be working both with compact Riemann surfaces (man-
ifolds of real dimension two) and complex surfaces (manifolds of real dimension
four). As a consequence we will always refer to Riemann surfaces as algebraic
curves, and reserve the term surface for complex surfaces.

Beauville surfaces are complex surfaces arising as the quotient of the product
of two quasiplatonic curves by an action of a finite group G. To give a more precise
definition, let us introduce first the concept of surfaces isogenous to a product.
These are surfacesX that are isomorphic to the quotient S1×S2/G of the product of
two curves S1 and S2 by the free action of a finite group G acting by biholomorphic
transformations. If the genus of both curves is g(S1), g(S2) ≥ 2 we say that X is
isogenous to a higher product.

First of all, let us note that each element of Aut(S1×S2) either fixes each curve
or interchanges them (see Proposition 0.1). Clearly if two elements g, h ∈ G <
Aut(S1 × S2) both interchange factors, their product gh does not. In particular if
we denote by G0 < G the subgroup of factor-preserving elements, then [G : G0] ≤ 2.

A particular case of surfaces isogenous to a product is Beauville surfaces, intro-
duced by F. Catanese in [14] following a construction of A. Beauville in [11] (see
Example 3.1 below).

A Beauville surface is a compact complex surface X satisfying the following
properties:

(i) X is isogenous to a higher product, X ∼= S1 × S2/G;
(ii) the subgroup G0 < G acts effectively on each of the curves Si producing

quotient orbifolds Si/G
0 of genus zero with three cone points.

We will say that X is of unmixed type (or that X is an unmixed Beauville
surface) if G = G0 and that it is of mixed type (or that it is a mixed Beauville
surface) if G 6= G0. Let us remark that in the mixed case necessarily S1

∼= S2. If
(l1,m1, n1) and (l2,m2, n2) are the types of the G0−coverings S1 and S2, we will
say that the Beauville surface X = S1 ×S2/G has bitype ((l1,m1, n1), (l2,m2, n2)).

There is always a minimal realization of X in the sense that G0 acts faithfully
on each factor Si. This is because if, for instance, G0 did not act faithfully on S1,

51
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so that there exists a subgroup G′ ⊳G acting trivially on S1, then we could write

X ∼= S1 × S2

G
=
S1/G

′ × S2/G
′

G/G′ =
S1 × (S2/G

′)

G/G′ .

Hence, from now on we will always assume that the realization X ∼= S1 × S2/G is
minimal.

Example 3.1 (Beauville). Consider the Fermat curve of degree five

F5 = {x5 + y5 + z5 = 0} .
The group G = (Z/5Z)2 acts freely on F5 × F5 in the following way: for each
(α, β) ∈ G define eα,β : F5 × F5 −→ F5 × F5 as





x1
y1
z1


 ,



x2
y2
z2




 7−→





ζαx1
ζβy1
z1


 ,




ζα+3βx2
ζ2α+4βy2

z2




 ,

where ζ = e2πi/5.
Then X := F5 × F5/(Z/5Z)

2 is an unmixed Beauville surface.

Beauville surfaces with abelian Beauville group have been studied and classified
([14, 5, 28, 40]). All of them arise as quotients of Fn × Fn by some action of the
group (Z/nZ)2, where Fn stands for the Fermat curve

Fn = {[x : y : z] ∈ P2(C) : xn + yn + zn = 0}
and gcd(n, 6) = 1. The number of isomorphism classes of Beauville surfaces which
have Beauville group (Z/nZ)2 is given by a polynomial in n of degree 4 in the
case of prime powers, and by a much more complicated formula in the general case
(see [40]). A consequence of these formulae is that for n = 5 there is only one
Beauville surface with group (Z/5Z)2, namely the one above originally constructed
by Beauville.

3.1. Uniformisation of unmixed Beauville surfaces

Let now X = S1 × S2/G be a Beauville surface and let us consider first the
unmixed case, i.e. the case in which G = G0. Clearly its holomorphic universal
cover is the bidisc H×H and the covering group is a subgroup of Aut(H×H). Let
us denote it by Γ12, so that X = H×H/Γ12 with Γ12

∼= π1(X). The first condition
in the definition of Beauville surface implies that there is an exact sequence of the
form

(3.1) 1 −→ K1 ×K2 −→ Γ12
ρ−−→ G −→ 1

where K1 and K2 uniformise the curves S1 = H/K1 and S2 = H/K2 and the
group G ∼= Γ12/K1 × K2 acts on S1 × S2 as follows. Let g be an element of
G. If (γ1, γ2) ∈ Γ12 is such that ρ(γ1, γ2) = g, then the action of g on points
[w1,w2] ∈ H/K1 ×H/K2 is given by the rule

g([w1,w2]) = [γ1(w1), γ2(w2)] ,

while the action of g on the individual factors is given by g([w1]) = [γ1(w1)] and
g([w2]) = [γ2(w2)].

Now, by the second condition in the definition, the quotients ∆1
∼= Γ12/K2 and

∆2
∼= Γ12/K1 of the group Γ12 must be triangle groups defining triangle G−covers
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fi : Si ∼= H/Ki −→ P1 ∼= H/∆i with G ∼= ∆i/Ki. Therefore there are two exact
sequences

1 −→ Ki −→ ∆i
ρi−−→ G −→ 1 (i = 1, 2)

representing the action of G on the individual factors so that, in particular, for the
element (γ1, γ2) above one must have ρ1(γ1) = ρ2(γ2) = g. It follows that

(3.2) Γ12 = {(γ1, γ2) ∈ ∆1 ×∆2 : ρ1(γ1) = ρ2(γ2)} < ∆1 ×∆2 .

Let (ai, bi, ci) be a generating triple defining the G−cover (Si, fi). Then the
subsets of G

Σ(ai, bi, ci) :=
⋃

g∈G

∞⋃

j=1

{gajig−1, gbjig
−1, gcjig

−1} (i = 1, 2)

consisting of the elements of G that fix points on S1 and S2 respectively, necessarily
have trivial intersection, that is

(3.3) Σ(a1, b1, c1) ∩ Σ(a2, b2, c2) = {1} ,
for otherwise the action of G on S1 × S2 would not be free.

Conversely, any pair of hyperbolic triples of generators (a1, b1, c1), (a2, b2, c2) of
G satisfying condition (3.3) define via the associated epimorphisms ρ1, ρ2 a group
Γ12 < ∆1 ×∆2 as in (3.2), which clearly uniformises a Beauville surface.

Corollary 3.1 ([14]). Let G be a finite group. Then there are curves S1 and
S2 of genera g(S1), g(S2) > 1 and an action of G on S1×S2 so that S1×S2/G is an
unmixed Beauville surface if and only if G has two hyperbolic triples of generators
(ai, bi, ci) of order (li,mi, ni), i = 1, 2, satisfying the compatibility condition (3.3).

Under these assumptions one says that such a pair of triples (a1, b1, c1; a2, b2, c2)
is an unmixed Beauville structure on G.

This is a useful tool, since it permits to check through a computer program
whether or not a group (of not very large order) admits Beauville structure. For
instance the following result can be checked by these means

Proposition 3.1. Let X = S1 × S2/G be a Beauville surface such that the
pair of genera (g(S1), g(S2)) of the curves S1 and S2 is at most (8, 49) (in the
lexicographic order). If G is non-abelian then G ∼= PSL(2, 7).

Proof. It is known that the minimum possible genus of a curve occurring
in the construction of a Beauville surface is 6 ([25]). It is also known that the
symmetric group on 5 elements S5 is the only non-abelian group up to order 128
admitting a Beauville structure ([5]). The corresponding pair of genera is (19, 21)
(see [25]). A list of all groups G acting on a curve S of small genus so that S/G
is an orbifold of genus zero with three branching values is given in [17]. There
are only six such groups of orders |G| ≥ 128 acting on curves of genus 6 to 8. A
computation carried out with MAGMA for these six groups shows that the only one
admitting a Beauville structure is G = PSL(2, 7) (with pair of genera (8, 49)). �

Example 3.2. By the last corollary, corresponding to Beauville’s original sur-
face described in Example 3.1 there should be a pair of triples of generators of
G = (Z/5Z)2 of type (5, 5, 5) satisfying the compatibility condition above. In fact
the following two triples will do

a1 = (1, 0), b1 = (0, 1), c1 = (4, 4),
a2 = (3, 1), b2 = (4, 2), c2 = (3, 2).
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The compatibility condition is easily checked, and in fact it is not hard to see that
the curve defined by these triples is in both cases the Fermat curve of degree five.
To prove this first note that, since all the elements in both triples have order 5,
the two corresponding curves will be uniformised by surface subgroups K1 and K2

of the triangle group Γ = Γ(5, 5, 5). As the quotient Γ/Ki = G is abelian, the
groups Ki must contain the commutator [Γ,Γ]. But Γ/[Γ,Γ] is already isomorphic
to (Z/5Z)2, so K1 = K2 = [Γ,Γ], and this group is known to uniformise the Fermat
curve of degree 5 (see for example [25, 39]).

3.1.1. Some restrictions to the existence of unmixed Beauville sur-
faces. A natural problem regarding Beauville surfaces X = S1× S2/G is to deter-
mine which genera g(S1) of S1 and g(S2) of S2 can arise in their construction. For
instance, in [25] it was shown that g(S1), g(S2) ≥ 6. In this section we improve
that result.

Perhaps the most direct way to get restrictions on the genera g(S1) and g(S2)
is to combine Riemann–Hurwitz’s formula (1.8) with the formula giving the Euler–
Poincaré characteristic of X , namely

(3.4) χ(X) =
χ(S1) · χ(S2)

|G| =
(2g(S1)− 2)(2g(S2)− 2)

|G| ,

the relevant fact being that this fraction has to be a natural number.
Actually an even stronger ingredient is obtained by considering the holomorphic

Euler characteristic of X , defined as the alternating sum of the dimensions of the
cohomology groups of the structure sheaf, i.e. χ(OX) = h0(OX)−h1(OX)+h2(OX)
(see for example [11] or [3]). In the case of a surface isogenous to a product we
have

(3.5) χ(OX) =
(g(S1)− 1)(g(S2)− 1)

|G| , i.e. χ(OX) =
χ(X)

4
,

and the point is, of course, that this fraction is still a natural number.
The last identity follows from Noether’s formula, a central result of the theory

of complex surfaces, which states that

χ(OX) =
1

12
(K2

X + χ(X)) .

Here, as usual, K2
Y denotes the degree of the self-intersection of the canonical class

of a complex surface Y . In the particular case in which Y = S1 × S2, the degree
K2
Y can be computed by considering generic holomorphic 1−forms ω1, ω

′
1 of S1 and

ω2, ω
′
2 of S2 and looking at the intersection of Z(η1) and Z(η2), the zero sets of

the 2−forms η1 = ω1 ∧ ω2 and η2 = ω′
1 ∧ ω′

2. Denoting intersection by · and union
by +, as it is customary in intersection theory, we have

Z(η1) · Z(η2) =
(
(Z(ω1)× S2) + (S1 ×Z(ω2))

)
·
(
(Z(ω′

1)× S2) + (S1 ×Z(ω′
2))

)
,

which by the Riemann–Roch theorem for curves is a set consisting of 2(2g(S1) −
2)(2g(S2) − 2) points, i.e. K2

Y = 2(2g(S1) − 2)(2g(S2) − 2). Therefore for the
quotient surface X = S1 × S2/G one has

K2
X =

2(2g(S1)− 2)(2g(S2)− 2)

|G| ,

which gives the expression (3.5) for χ(OX).
Using these ingredients we can prove the following lemma.
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Lemma 3.1. Let G be an arbitrary finite group and X = S1 × S2/G be an
unmixed Beauville surface isogenous to the product of two curves S1 and S2 of
genera (g(S1), g(S2)) = (p+ 1, q + 1) for two prime numbers p and q. Then:

(i) p = q;
(ii) G = (Z/nZ)2 for some integer n;
(iii) S1

∼= S2
∼= Fn, the Fermat curve of degree n.

Proof. By formula (3.5) the fraction χ(OX) = pq/|G| is a natural number.
The only possibility for G being non abelian is to be isomorphic to Z/qZ ⋊ Z/pZ,
which can occur only if p divides q−1. We claim that in this case G does not admit
a Beauville structure.

Indeed, since all p−subgroups (resp. q−subgroups) of Z/qZ⋊Z/pZ are conju-
gate, then any possible pair of generating triples (a1, b1, c1) and (a2, b2, c2) satisfying
the compatibility condition (3.3) must have orders (p, p, p) and (q, q, q) respectively.
Now the image x ∈ G/(Z/qZ) of any element x ∈ G of order q can only be the
identity, and so x ∈ Z/qZ. In other words, no triple of elements of order q such
as (a2, b2, c2) can generate the whole group G. Therefore G must be abelian, and
by [14] necessarily p = q and G = (Z/pZ)2.

Now, arguing as in Example 3.2, we can deduce that both curves S1 and S2

are isomorphic to the Fermat curve of degree p. �

In fact there are no Fermat curves of genus p+ 1 for any prime p > 5. This is
only because the genus of Fd is g = (d− 1)(d− 2)/2, which cannot equal p+ 1 for
any prime p > 5.

Theorem 3.1. If X = S1 ×S2/G is an unmixed Beauville surface with pair of
genera (g(S1), g(S2)) = (p+1, q+1), for prime numbers p and q, then p = q = 5 and
X is isomorphic to the complex surface described in Example 3.1. In particular, this
is the only Beauville surface reaching the minimum possible pair of genera (6, 6).

The next pair of genera (in the lexicographic order) for which there exists a
Beauville surface is (8, 49), therefore there are no Beauville surfaces with pair of
genera (6, g(S2)) or (7, g(S2)) for any g(S2) > 6.

Proof. The first part of the theorem follows directly from the previous com-
ments and the already mentioned fact that Beauville’s original example described
in Example 3.1 is the only Beauville surface with group (Z/5Z)2. The second one
is consequence of Proposition 3.1. �

3.1.2. Isomorphisms of unmixed Beauville surfaces. Let us suppose
that there is an isomorphism f between two Beauville surfaces X and X ′. By
covering space theory we can lift f to an isomorphism between their universal cov-
erings to obtain a commutative diagram as follows

H×H
f̃−−−−→ H×Hy

y

X =
H×H

Γ12

f−−−−→ H×H

Γ′
12

= X ′

By Proposition 0.1, there exist f̃1, f̃2 ∈ PSL(2,R) such that

f̃(w1,w2) =

{
(f̃1(w1), f̃2(w2)), if f̃ does not interchange factors,

(f̃1(w2), f̃2(w1)), if f̃ interchanges factors.
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Note that in the second case f̃ can be rewritten as f̃ = (f̃1, f̃2) ◦ J .
Bauer, Catanese and Grunewald proved in [5] the following characterisation of

isomorphism classes of Beauville surfaces.

Proposition 3.2. Two unmixed Beauville surfaces X and X ′ are isomorphic
if and only if there exist δ1, δ2 ∈ PSL(2,R), ψ ∈ Aut(G) and a permutation ν ∈ S2

such that the following diagrams commute

(3.6)

∆1

ϕδ1−−−−−−→ Γ′
ν(1) ∆2

ϕδ2−−−−−−→ Γ′
ν(2)

ρ1

y
yρ′ν(1) ρ2

y
yρ′ν(2)

G
ψ−−−−−→ G G

ψ−−−−−→ G

i.e. such that ψ ◦ ρi = ρ′ν(i) ◦ ϕδi .

The proof is based in the fact that the lift of such an isomorphism must conju-
gate the subgroups K1,K2 < Γ12 into the subgroups K ′

1,K
′
2 < Γ′

12.
We can translate this proposition into conditions on the pairs of triples of

generators of G for their corresponding Beauville surfaces to be isomorphic.

Corollary 3.2. Let q = (a1, b1, c1; a2, b2, c2) and q′ = (a′1, b
′
1, c

′
1; a

′
2, b

′
2, c

′
2) be

two Beauville structures on G. Then the Beauville surfaces corresponding to q and
q′ are isomorphic if and only if there exists ψ ∈ Aut(G) and ν ∈ S2 such that

(3.7) ψ(ai, bi, ci) ≡ (a′ν(i), b
′
ν(i), c

′
ν(i)) mod I(G; l′ν(i),m

′
ν(i), n

′
ν(i)) , i = 1, 2.

Moreover, the corresponding uniformising groups are conjugate by means of any
element (δ1, δ2) ∈ Aut(H)×Aut(H) fitting into (3.6).

By the comments above we have the following

Corollary 3.3. The following are invariants of the isomorphism class of an
unmixed Beauville surface X = S1 × S2/G:

(i) the group G;
(ii) the bitype ((l1,m1, n1), (l2,m2, n2));
(iii) the twisted isomorphism class of the orbifolds Si/G, hence the curves Si

themselves.

3.1.3. Automorphisms of unmixed Beauville surfaces. In this section
we will study the group of automorphisms of unmixed Beauville surfaces. If we
denote by Γ12 < Aut(H)×Aut(H) the group uniformising such a Beauville surface
X , as described in (3.1) and (3.2), then of course Aut(X) ∼= N(Γ12)/Γ12, where
N(Γ12) stands for the normaliser of Γ12 in Aut(H×H).

Consider first the subgroup N(Γ12)∩ (∆1 ×∆2). We have the following result.

Lemma 3.2. The rule

θ : N(Γ12) ∩ (∆1 ×∆2) −→ Z(G)
(γ1, γ2) 7−→ ρ2(γ2)

−1ρ1(γ1)

defines an epimorphism whose kernel is Γ12. Here, as usual, Z(G) stands for the
centre of G.

Proof. We first observe that an element (γ1, γ2) ∈ ∆1 ×∆2 normalises Γ12 if
and only if for every g ∈ G one has

(3.8) ρ1(γ1)gρ1(γ1)
−1 = ρ2(γ2)gρ2(γ2)

−1 ,
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i.e. ρ2(γ2)
−1ρ1(γ1) ∈ Z(G). This shows that the map θ is well defined.

Now it is easy to see that θ is a homomorphism. Indeed

θ ((γ1, γ2) ◦ (γ′1, γ′2)) = θ (γ1γ
′
1, γ2γ

′
2) = ρ2(γ

′
2)

−1ρ2(γ2)
−1ρ1(γ1)ρ1(γ

′
1) =

= ρ2(γ
′
2)

−1θ (γ1, γ2) ρ1(γ
′
1) = θ (γ1, γ2) · θ (γ′1, γ′2) .

On the other hand, if ρ1(β) = h ∈ Z(G) then the element (β, 1) clearly satisfies
the relation (3.8) and therefore it is a preimage of h.

Finally, we see that θ(γ1, γ2) = 1 if and only if ρ1(γ1) = ρ2(γ2), that is if and
only if (γ1, γ2) ∈ Γ12. �

Now we can prove the following

Theorem 3.2. Let X be an unmixed Beauville surface with Beauville group
G. The group Z(G) is naturally identified with a subgroup of Aut(X) of index
dividing 72. More precisely, let X have bitype ((l1,m1, n1), (l2,m2, n2)), and con-
sider natural numbers ε, κ1, and κ2 where ε equals 2 if the types (l1,m1, n1) and
(l2,m2, n2) agree and 1 otherwise, and κi equals 6, 2 or 1 depending on whether the
type (li,mi, ni) has three, two or no repeated orders. Then there exists a natural
number N dividing ε · κ1 · κ2 such that

|Aut(X)| = N · |Z(G)| .

In particular, if κ1 = κ2 = ε = 1 we have that Aut(X) ∼= Z(G).

Proof. The previous lemma permits us to regard Z(G) as a subgroup of
Aut(X) via the identification

Z(G) ∼= N(Γ12) ∩ (∆1 ×∆2)

Γ12
≤ Aut(X) .

Consider the intersections

N0(Γ12) = N(Γ12) ∩ (Aut(H)×Aut(H)) and

N1(Γ12) = N0(Γ12) ∩ (∆1 ×∆2) = N(Γ12) ∩ (∆1 ×∆2) .

Using the identity |Aut(X)| = [N(Γ12) : Γ12] one gets the following equality

|Aut(X)| = [N(Γ12) : N0(Γ12)] · [N0(Γ12) : N1(Γ12)] · [N1(Γ12) : Γ12] .

Now, ε := [N(Γ12) : N0(Γ12)] ≤ 2 and [N1(Γ12) : Γ12] = |Z(G)|.
On the other hand, clearly one has N0(Γ12) < N(∆1) × N(∆2), and there-

fore [N0(Γ12) : N1(Γ12)] divides [N(∆1) × N(∆2) : ∆1 × ∆2]. If we write κi :=
|N(∆i)/∆i|, then [N(∆1) × N(∆2) : ∆1 × ∆2] = κ1 · κ2 and the result follows
from (1.4). �

The above bounds are actually sharp, as shown by examples by Y. Fuertes
([23]) and by G. A. Jones in [47]. This last paper contains most of what is known
about the automorphism groups of unmixed Beauville surfaces.

Example 3.3. For Beauville’s original surface with group G = (Z/5Z)2 and
bitype ((5, 5, 5), (5, 5, 5)), the automorphism group is a semidirect product of the
centre Z(G) = G and Z/3Z ([40]), and therefore |Aut(X)| = 3 · |Z(G)| = 75.
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3.2. Uniformisation of mixed Beauville surfaces

We focus our attention now on the mixed case. Recall that a mixed Beauville
surface is a surface of the form X = S1 × S2/G, where G is a finite group acting
freely on S1 × S2 so that the index two subgroup G0 ⊳ G of factor-preserving
elements of G acts on each of the two Riemann surfaces in such a way that the

projections Si −→ Si/G
0 ∼= Ĉ ramify over three values. Note that if g ∈ G\G0 then

G = 〈G0, g〉 and, moreover, the action of g defines a factor-reversing automorphism
of the associated unmixed Beauville surface X0 = S1 × S2/G

0. Such an element g
induces an isomorphism between the orbifolds S1/G

0 and S2/G
0. It follows that in

this case S1
∼= S2, and that the corresponding triangle groups ∆1 and ∆2 are both

equal to the group ∆ = ∆(l,m, n). As a consequence in the mixed case instead of
the bitype we will simply call (l,m, n) the type of X .

Uniformisation theory tells us that there is a group Γ12 < Aut(H × H) such
that X = H × H/Γ12 and X0 = H × H/Γ0

12 where Γ0
12 < ∆ ×∆ is the index two

subgroup of Γ12 consisting of the factor-preserving elements. Therefore we have
exact sequences

1 −→ K1 ×K2 −→ Γ12
ρ−−→ G −→ 1

1 −→ K1 ×K2 −→ Γ0
12

ρ0−−→ G0 −→ 1

where ρ0((γ1, γ2)) = ρ1(γ1) = ρ2(γ2) and ρ|Γ0
12

= ρ0. In particular the epimorphism

ρ is determined by ρ0 together with the image ρ(h) = h ∈ G of any chosen element
h ∈ Γ12 \ Γ0

12.
Note that each element h ∈ Γ12 \ Γ0

12 can be written as h = (β1, β2) ◦ J where
β1, β2 ∈ Aut(H). Now, as h must normalise Γ0

12, for every element (γ1, γ2) ∈ Γ0
12

we have

h ◦ (γ1, γ2) ◦ h−1 = (β1, β2) ◦ J ◦ (γ1, γ2) ◦ J ◦ (β−1
1 , β−1

2 ) =

= (β1γ2β
−1
1 , β2γ1β

−1
2 ) ∈ Γ0

12 .

It follows that β1, β2 ∈ N(∆), the normaliser of ∆ = ∆(l,m, n).
With these facts one can get a criterion for mixed surfaces analogous to the

one established in Corollary 3.1 for the unmixed ones. As in the unmixed case we
will say that a finite group G admits a mixed Beauville structure if there exists an
action of G on the product of two Riemann surfaces defining a mixed Beauville
surface.

Proposition 3.3. A finite group G admits a mixed Beauville structure if and
only if there exist an index two subgroup G0⊳G and elements a, b, c ∈ G0 such that
the following conditions hold:

(i) (a, b, c) is a hyperbolic triple of generators of G0;
(ii) h2 6= Id, for every h ∈ G \G0;
(iii) there exists g ∈ G\G0 such that Σ(a, b, c)∩Σ(gag−1, gbg−1, gcg−1) = {Id}.

Remark 3.1. It is important to observe that if, in the construction above,
instead of the element g we use another element g′ ∈ G \ G0 satisfying condition
(iii) in Proposition 3.3, then the mixed Beauville surface X ′ so obtained will be
isomorphic to X .
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Due to the remark above we can refer to a mixed Beauville structure on G sim-
ply by giving a quadruple (G0; a, b, c) satisfying the conditions in Proposition 3.3,
without need to mention any particular element g ∈ G \G0.

3.2.1. Some restrictions to the existence of mixed Beauville surfaces.
There are some obvious conditions that groups admitting mixed Beauville struc-
tures must satisfy. For instance, simple groups cannot do so, as they do not possess
index two subgroups. Likewise, the symmetric groups Sn do not admit mixed
Beauville structures either. This is because the only subgroup of Sn of index two is
the alternating group An, and Sn \ An contains plenty of elements of order two, a
fact which violates condition (ii) in Proposition 3.3. Another family of groups which
cannot admit mixed Beauville structures is the abelian ones (see [5], Theorem 4.3).

The next result included in [24] exhibits another restriction of this sort.

Proposition 3.4. Let G be a group admitting a Beauville structure. Then the
order of any element of G \G0 is divisible by 4. In particular, the order |G| of G
is a multiple of 4.

Proof. Let g ∈ G \ G0 an element of order k. If k is an odd natural num-
ber then gk is still factor-reversing, thus different from the identity. Therefore k
is necessarily even. Now if k = 2d, then (gd)2 = 1 which by condition (ii) in
Proposition 3.3 implies that gd ∈ G0, which in turn implies that d is even. �

Next we give a restriction on the genus of the Riemann surfaces that can arise
in the construction of mixed Beauville surfaces.

Since both Riemann surfaces S1, S2 intervening in the construction of a mixed
Beauville surface are isomorphic to the same Riemann surface S ∼= S1

∼= S2, using
the formulae (3.4) and (3.5) for the Euler–Poincaré characteristic and the holomor-
phic Euler characteristic we get

χ(OX) =
χ(X)

4
=

(g(S)− 1)2

|G| =
(g(S)− 1)2

2|G0| ∈ N ,

where g(S) is the genus of the Riemann surface S. Thus, in particular, g(S) is odd.
This formula already tells us that (g(S)− 1)2 ≥ |G|.

On the other hand, by the Riemann–Hurwitz formula we have

2g(S)− 2 = |G0|
(
1−

(
1

l
+

1

m
+

1

n

))
,

where (l,m, n) is the signature of the G−covering S. Furthermore, it is known that
1/42 ≤ 1− (1/l+1/m+1/n)< 1 and therefore, from the last two formulae we can
deduce that

(3.9) max

{√
|G|+ 1,

|G|
168

+ 1

}
≤ g(S) < |G|

4
+ 1 .

Now it is known that no group of order smaller than 256 admits a mixed
Beauville structure. In fact, in [7] it is proved that there are two groups of order
256 admitting a mixed Beauville structure of type (4, 4, 4), whose corresponding
Riemann surfaces have genus 17. This fact together with the lower bound in (3.9)
leads to the following.

Corollary 3.4. Let X = S × S/G be a mixed Beauville surface. Then g(S)
is an odd number ≥ 17 and this bound is sharp.
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Proof. We already noted that g(S) has to be odd.
Moreover, the comments above together with the inequalities in (3.9) imply

that g(S) ≥ max
{√

256 + 1, 256168 + 1
}
= 17. �

3.2.2. Isomorphisms of mixed Beauville surfaces. Let us consider two
mixed Beauville surfaces X = S × S/G and X ′ = S′ × S′/G′, associated to mixed
Beauville structures (G0; a, b, c) and (G′0; a′, b′, c′), and having underlying unmixed
Beauville surfaces X0 and X ′0, respectively.

Suppose f : X −→ X ′ is an isomorphism. Let f̃ : H × H −→ H × H be its
lift to the universal cover and f∗ : Γ12 −→ Γ′

12 the group isomorphism induced by

f̃ . Clearly the restriction f∗|Γ0
12

gives an isomorphism between Γ0
12 and Γ′0

12. In

particular f lifts to an isomorphism f0 : X0 −→ X ′0 and we have the following
commutative diagram

H×H
f̃−−−−→ H×Hy

y

X0 =
H×H

Γ0
12

f0

−−−−→ H×H

Γ′0
12

= X ′0

y
y

X =
H×H

Γ12

f−−−−→ H×H

Γ′
12

= X ′

Moreover, as in the unmixed case f̃ conjugates K1×K2 to K
′
1×K ′

2, therefore it
induces an isomorphism ψ between G ∼= Γ12/K1×K2 and G

′ ∼= Γ′
12/K

′
1×K ′

2 which
restricts to an isomorphism between G0 ∼= Γ0

12/K1 ×K2 and G′0 ∼= Γ′0
12/K

′
1 ×K ′

2.
By pre-composition with an element of Γ12 if necessary, we can always assume

that f̃ is factor-preserving. Then, with the same notation as in section 3.1.2 (except
that here G0 plays the role of the group we denoted there by G), one has (see (3.7))

ψ(a, b, c) ≡ (a′, b′, c′) mod I(G′0; l,m, n) .

Conversely, it can be seen that the existence of an isomorphism ψ : G −→ G′,
with ψ(G0) = G′0, such that ψ(a, b, c) ≡ (a′, b′, c′) mod I(G′0; l,m, n) implies that
the groups Γ12 and Γ′

12 uniformising the mixed Beauville surfaces corresponding to
the quadruples (G0; a, b, c) and (G′0; a′, b′, c′) are conjugate.

Therefore we have the following characterization of isomorphism classes of
mixed Beauville surfaces via their defining quadruples.

Corollary 3.5. Let q = (G0; a, b, c) and q′ = (G′0; a′, b′, c′) be Beauville struc-
tures on G. Then the Beauville surfaces corresponding to q and q′ are isomorphic
if and only if there exists an automorphism ψ of G with ψ(G0) = G′0 such that

ψ(a, b, c) ≡ (a′, b′, c′) mod I(G′0; l,m, n) .

Corollary 3.6. The following are invariants of the isomorphism class of a
mixed Beauville surface X = S × S/G:

(i) the abstract groups G and G0;
(ii) the type (l,m, n) of X;
(iii) the twisted isomorphism class of the G0−covering S −→ S/G0, hence the

Riemann surface S itself.
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3.2.3. Automorphisms of mixed Beauville surfaces. Proceeding in the
same way as in section 3.1.3, we will study the group of automorphisms of a mixed
Beauville surface X . We have the following chain of inclusions

Γ0
12 ⊳ Γ12 < N(Γ12) < N(Γ0

12) < Aut(H×H) ,

and the automorphism group of X can be seen as Aut(X) ∼= N(Γ12)/Γ12. Consider
the intersections

N0(Γ12) = N(Γ12) ∩ (Aut(H)×Aut(H)) and

N1(Γ12) = N0(Γ12) ∩ (∆×∆) = N(Γ12) ∩ (∆×∆) .

We have a natural isomorphism

(3.10) N0(Γ12)/Γ
0
12
∼= N(Γ12)/Γ12

induced by the natural injection of N0(Γ12) in N(Γ12).
As in the unmixed case (section 3.1.3) we have a homomorphism

θ : N1(Γ12) −→ Z(G0)
(γ1, γ2) 7−→ ρ2(γ2)

−1ρ1(γ1)

whose kernel is Γ0
12.

Choose an element g ∈ G \G0 and define the subgroup

Z(G0)−1 := {h ∈ Z(G0) : gh−1g−1 = h} .
As any other element of G \G0 is of the form g′ = gh0 for some h0 ∈ G0, one

readily sees that Z(G0)−1 does not depend on the choice of g within the subset
G \G0. We claim that Im(θ) = Z(G0)−1.

Now recall that a uniformising group of X was provided by Γ12 = 〈Γ0
12, g〉,

where g = (τ, 1) ◦ J for any τ ∈ ∆ with ρ1(τ) = g2. Therefore any element
(γ1, γ2) ∈ N(Γ12) must satisfy

(γ1, γ2) ◦ (τ, 1) ◦ J ◦ (γ1, γ2)−1 = (γ1τγ
−1
2 τ−1, γ2γ

−1
1 ) ◦ (τ, 1) ◦ J ∈ Γ12 ,

i.e. (γ1τγ
−1
2 τ−1, γ2γ

−1
1 ) ∈ Γ0

12, which is equivalent to the equality

(3.11) ρ2(γ2)ρ2(γ1)
−1 = ρ1(γ1τγ

−1
2 τ−1) = ρ1(γ1)g

2ρ1(γ2)
−1g−2 .

Now pre-multiplying both sides by ρ2(γ2)
−1 and bearing in mind that the element

ρ2(γ2)
−1ρ1(γ1) belongs to Z(G

0) we get

ρ2(γ1)
−1 = g2ρ2(γ2)

−1ρ1(γ1)ρ1(γ2)
−1g−2

and then, using the relation ρ2(γ1)
−1 = gρ1(γ1)

−1g−1 and taking inverses we obtain

ρ1(γ1) = gρ1(γ2)ρ1(γ1)
−1ρ2(γ2)g

−1 = gρ1(γ2)g
−1 · gθ(γ1, γ2)−1g−1 .

Finally, since gρ1(γ2)g
−1 = ρ2(γ2), from these equalities one easily gets

θ(γ1, γ2) = g · θ(γ1, γ2)−1 · g−1 ,

hence θ(γ1, γ2) ∈ Z(G0)−1.
To prove that θ is an epimorphism take any h ∈ Z(G0)−1 and let γ ∈ ∆ be such

that ρ1(γ) = h. Then ρ2(γ
−1) = gρ1(γ

−1)g−1 = gh−1g−1 = h, hence (γ, γ−1) ∈ Γ0
12

which in turn implies that (γ, 1) ∈ N1(Γ12) since it satisfies formula (3.11), and
clearly θ(γ, 1) = h. Therefore we have

N1(Γ12)

Γ0
12

∼= Z(G0)−1
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which can be regarded as a subgroup of Aut(X) = N(Γ12)/Γ12 via the identifica-
tion (3.10).

Now we can prove the following:

Theorem 3.3. Let X be a mixed Beauville surface with group G. The group
Z(G0)−1 is canonically identified with a subgroup of Aut(X) of index dividing 36.
More precisely, let κ be 6, 2 or 1 depending on whether the type (l,m, n) of X has
three, two or no repeated orders. Then there exists a natural number N dividing κ2

such that

|Aut(X)| = N · |Z(G0)−1| .
In particular, if κ = 1 then Aut(X) ∼= Z(G0)−1.

Proof. By (3.10) one has the following equality

|Aut(X)| = |N0(Γ12)/Γ
0
12| = [N0(Γ12) : N1(Γ12)] · [N1(Γ12) : Γ

0
12] .

Now, by the comments above we have [N1(Γ12) : Γ
0
12] = |Z(G0)−1|.

On the other hand N0(Γ12) < N(∆) × N(∆), and so [N0(Γ12) : N1(Γ12)] divides
[N(∆)×N(∆) : ∆×∆] = |N(∆)/∆|2 = κ2, and the result follows from (1.4). �

3.3. Metric rigidity of unmixed Beauville surfaces

In this section we prove an alternative version of Catanese’s rigidity results for
Beauville surfaces. We recall that, if we consider the metric in H × H given by
the Pythagorean formula ds2

H×H
= (ds1)

2
H
+ (ds2)

2
H
, the automorphisms of H × H

coincide with its isometries, and therefore the group of factor-preserving isometries
of H×H agrees with Aut(H)×Aut(H), which contains the uniformising group Γ12.
Therefore any Beauville surface carries a canonical metric induced by the product
metric on H×H.

The following rigidity theorem for Beauville surfaces is a consequence of the
rigidity of triangle groups.

Theorem 3.4. Two unmixed Beauville surfaces X and X ′ are isometric if and
only if π1(X) ∼= π1(X

′).

Proof. Let us identify the fundamental groups of X and X ′ with their corre-
sponding uniformising groups Γ12,Γ

′
12 < Aut(H)×Aut(H) and let Φ : Γ12 −→ Γ′

12

be a group isomorphism. First we claim that, up to renumbering, Φ(K1) = K ′
1 and

Φ(K2) = K ′
2 so that, in particular, Φ(K1×K2) = K ′

1×K ′
2. Clearly the centraliser

CΓ12((γ1, γ2)) of an element (γ1, γ2) ∈ Γ12 agrees with (C∆1(γ1)× C∆2(γ2)) ∩ Γ12,
and it is known that C∆i

(γi) is abelian if γi 6= 1 (see for instance [32], Remark
2.3). Therefore CΓ12((γ1, γ2)) is either abelian, when γi 6= 1 for i = 1, 2, or contains
the subgroup Ki, hence is not abelian, if γi = 1. As a consequence one of the
coordinates of the image of any element (k, 1) ∈ K1 must be 1, say the second one,
and therefore Φ(K1) = K ′

1.
Moreover, since clearly ∆1

∼= Γ12/K2 and ∆2
∼= Γ12/K1, it further follows that

Φ induces isomorphisms Φi : ∆i −→ ∆′
i defined by

Φ1(γ1) = p1 ◦ Φ(γ1, γ2) ,
where p1 stands for the first projection and γ2 is any element of ∆2 so that (γ1, γ2) ∈
Γ12. In other words the isomorphism Φ : Γ12 −→ Γ′

12 extends to an isomorphism
Φ1 × Φ2 : ∆1 ×∆2 −→ ∆′

1 ×∆′
2.
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Now by Corollary 1.1 any group isomorphism between triangle groups is in-
duced by an isometry of H and therefore the product of the isometries δ1, δ2 corre-
sponding to Φ1,Φ2 induces the required isometry δ1 × δ2 : X −→ X ′. �

As a corollary we obtain

Theorem 3.5 (Catanese [14, 6]). Let X = S1 × S2/G be a Beauville surface.

(i) If X ′ = S′
1×S′

2/G
′ is another Beauville surface such that π1(X) = π1(X

′)
then, up to renumbering, S′

i
∼= Si or Si for i = 1, 2.

(ii) There are at most four non-isomorphic Beauville surfaces with fundamen-
tal group isomorphic to π1(X).

Proof. (i) The isomorphisms between Ki and K ′
i in the previous proof are

induced by isometries δi. Thus, depending on whether these are orientation-
preserving or orientation-reversing, we have S′

i
∼= Si or S

′
i
∼= Si.

(ii) Let δ1 × δ2 : X −→ X ′ be an isometry between X and any other Beauville
surface X ′ with same fundamental group. If both isometries δi are simultaneously
orientation-preserving then δ1× δ2 : X −→ X ′ is a holomorphic isomorphism. This
clearly leaves at most four possibilities for the isomorphism class of X ′. �

Remark 3.2. We observe that the group G is an invariant of the homotopy
class of X , and so are the curves Si, up to complex conjugacy, and their types.

In particular any holomorphic isomorphism between Beauville surfaces X and
X ′ induces an isomorphism between the corresponding curves Si and S

′
i. Thus the

group G, the curves Si and the types of the orbifolds Si/G are invariants of the
isomorphism class of X .

3.4. Non-homeomorphic conjugate Beauville structures on PSL(2,p)

It was proved by Bauer, Catanese and Grunewald in [5] that PSL(2, p) admits
Beauville structure for every prime p > 5, a result later generalized to PSL(2, q)
for prime powers q > 5 by Fuertes and Jones [26] and Garion [29] (see also [28]).
In this section we will construct Beauville surfaces with group PSL(2, p) whose
Galois orbits contain surfaces with non-isomorphic fundamental group. First of all,
we should note that Beauville surfaces are in fact complex surfaces defined over
Q. This is a consequence of a version of Belyi’s Theorem for complex surfaces, in
which Belyi functions are replaced by Lefschetz functions (see [38]).

Now, Catanese’s rigidity results suggest that Beauville surfaces should provide
a fertile source of examples of such surfaces. Indeed any Beauville surface X =
S1 × S2/G, where S1, S2 are curves of genera g(S1) 6= g(S2) such that there is a
σ ∈ Gal(Q/Q) so that Sσ1 is not isomorphic to S1 or S1 will be not homeomorphic
to Xσ. The problem is that, as far as we know, the only examples of Beauville
surfaces in which the algebraic equations of the curves Si are explicitly given are
Beauville’s own examples, in which S1 = S2 is a Fermat curve xn+yn+zn = 0 and
it is easy to see that in that case Xσ = X for every Galois element σ ([40]). Rather,
the construction of Beauville surfaces with Beauville group G is usually achieved
by choosing a pair of triples of generators (ai, bi, ci) of G satisfying Criterion (3.3),
and in general there is no way to figure out what the action of σ on these generators
looks like.
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To explain the importance of these examples we recall that, by Hodge’s Theo-
rem, the dimensions of the cohomology groupsHi(X,C) of a complex projective va-
riety X can be expressed in terms of the Hodge numbers hp,q(X) = dimHp(X,Ωq)
which, by Serre’s GAGA principle, remain invariant under Galois conjugation. It
follows that the most standard topological invariants, namely the Betti numbers
and the signature of a complex projective surface are Galois invariant (see for
example [66] Th. 6.33). Nevertheless in 1964 J. P. Serre ([57]) gave an exam-
ple of a complex projective surface possessing non-homeomorphic Galois conju-
gates. Several instances of this or similar phenomena have been found since then
(see [1, 2, 21, 15, 53, 8, 58, 23]). Another important property of our exam-
ples is that, while the fundamental groups π1(X) and π1(X

σ) are not isomorphic,
their profinite completions are. This will be a direct consequence of Grothendieck’s
theory of the algebraic fundamental group of algebraic varieties.

First we consider Beauville surfaces with group PSL(2, 7) and pair of genera
(8, 49), which turns out to be the minimum for which this phenomenon occurs. We
find that there are only two of them, that they form a complete orbit under the
action of Gal(Q/Q) and that they are not homeomorphic to each other.

Then for p > 7 we construct Beauville surfaces with group PSL(2, p), whose
Galois orbits contain an arbitrarily large number of pairwise non-homeomorphic
Beauville surfaces.

3.4.1. The case PSL(2, 7). We will deal with Beauville structures of type
((3, 3, 4), (7, 7, 7)) in the group PSL(2, 7). Let (a1, b1, c), (a

′
1, b

′
1, c), (a2, b2, c) and

(a′2, b
′
2, c) be the (3, 3, 4) triples of generators of PSL(2, 7) in section 1.5.3 and

(u, v, w) and (u−1, v′, w−1) be the (7, 7, 7) triples introduced in Example 1.2.
Thanks to Corollary 3.1 we can introduce the following Beauville surfaces:

• X1 defined by the pairs of triples (a1, b1, c) and (u, v, w);
• X2 defined by the pairs of triples (a2, b2, c) and (u, v, w);

With the notation of section 1.5 these surfaces can be written as

X1 =
D1 ×D
G1

, X2 =
D2 ×D
G2

where G1
∼= PSL(2, 7) (resp. G2

∼= PSL(2, 7)) is a subgroup of Aut(D1 ×D) (resp.
a subgroup of Aut(D2 ×D)).

Note that the compatibility condition (3.3) in the Criterion is automatically
satisfied, since the orders involved in each of the two triples are coprime. We have
the following

Theorem 3.6. For the surfaces X1 and X2 constructed above the following
statements hold:

(i) they are the only Beauville surfaces with group G = PSL(2, 7) and curves
of genera 8 and 49;

(ii) they constitute a complete orbit for the action of Gal(Q/Q);
(iii) they have non-isomorphic fundamental groups, hence they are not home-

omorphic to each other;
(iv) their pair of genera (8, 49) is the minimum (in the lexicographic order) for

which non-homeomorphic Galois conjugate Beauville surfaces exist.

Proof. (i) It can be seen that any pair of triples of PSL(2, 7) producing a
Beauville surface with curves of genera 8 and 49 have to have type (3, 3, 4) and
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(7, 7, 7) respectively (see for example [25], Theorem 13). By Corollary 3.2, when
defining Beauville surfaces we can consider triples of generators up to the action of
I(G; l,m, n). Therefore the surfaces defined by the following pairs of triples account
for all the Beauville surfaces of this type:

I. (a1, b1, c ; u, v, w), V. (a2, b2, c ; u, v, w),
II. (a1, b1, c ; u

−1, v′, w−1), VI. (a2, b2, c ; u
−1, v′, w−1),

III. (a′1, b
′
1, c ; u

−1, v′, w−1), VII. (a′2, b
′
2, c ; u

−1, v′, w−1),
IV. (a′1, b

′
1, c ; u, v, w), VIII. (a′2, b

′
2, c ; u, v, w).

Note that X1 and X2 are defined by the pairs of triples I and V respectively.
Now I and III define the same Beauville surface. In fact by the results in sec-

tion 1.5 the triples (a1, b1, c) and (a′1, b
′
1, c) are related by an element ϕ1 ∈ Aut(G)\G

and similarly there exists ϕ2 ∈ Aut(G) \ G relating (u, v, w) and (u−1, v′, w−1).
Since [Aut(G) : G] = 2 we know that ϕ2 = ϕ1ϕ for some inner automorphism η.
Therefore both triples are related by the diagonal action of ϕ1 composed with the
action of Id×η and so our claim follows from Corollary 3.2. An analogous argument
shows that the Beauville surfaces defined by II and IV, by V and VII and by VI
and VIII are also pairwise isomorphic.

We now claim that II defines the same surface as I (resp. VI defines the
same surface as V). In order to prove it, we first note that the pairs of triples
(ai, bi, c ; u, v, w) and (aibia

−1
i , ai, c ; u, v, w) for i = 1, 2 define isomorphic Beauville

surfaces by Corollary 3.2. Now if we denote by ψ conjugation by
(
5 5
2 6

)
∈ PGL(2, 7)

(resp. conjugation by
(
4 3
4 6

)
∈ PGL(2, 7)) and by ϕ conjugation by

(
6 6
5 4

)
∈

G (resp. conjugation by
(
2 6
1 0

)
∈ G) we see that the element ψ acting diago-

nally, composed with Id × ϕ interchanges the triples (a1b1a
−1
1 , a1, c ; u, v, w) and

(a1, b1, c ; u
−1, v′, w−1) (resp. interchanges the triples (a2b2a

−1
2 , a2, c ; u, v, w) and

(a2, b2, c ; u
−1, v′, w−1)).

(ii) The curveDσ is isomorphic toD for each σ ∈ Gal(Q/Q). Now, by Theorem 1.4,
if σ(ζ8) = ζ58 the curves Dσ

1 and D2 are isomorphic and therefore, by Remark 3.2,
for any such σ we have Xσ

1
∼= X2.

(iii) If π1(X1) ∼= π1(X2), then Theorem 3.5 would imply that D1 would be iso-
morphic either to D2 or to D2 which, by parts 3 and 5 of Theorem 1.4, is not the
case.

(iv) To see the minimality of the pair (g1, g2) = (8, 49), first let us note that all
Beauville surfaces with abelian Beauville group are of the form Fn×Fn/GA, where
Fn is the Fermat curve of degree n, hence defined over Q, and that the action of GA
is also Galois invariant (see Corollary 1 in [40]). It follows that all such surfaces
are defined over Q. Now the result is a consequence of Proposition 3.1. �

Theorem 3.6 also implies the following

Corollary 3.7. The field of moduli of the Beauville surfaces X1 and X2 is
Q(
√
2).

Proof. It is obvious that the inertia groups IX1 and ID1 (resp. IX2 and ID2)
coincide and the corollary follows from part (v) of Theorem 1.4. �
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3.4.2. Arbitrarily large Galois orbits of Beauville surfaces with group
PSL(2,p). We consider now Beauville structures of type ((2, 3, n), (p, p, p)) in the
group G = PSL(2, p), where n > 6 divides either (p− 1)/2 or (p+ 1)/2.

Clearly any pair of triples of generators of G of types (2, 3, n) and (p, p, p)
satisfy the criterion (3.3), since the orders are coprime. Hence, with the notation
of chapter 1, for any prime number p > 5 we can introduce the following φ(n)
Beauville surfaces

• Xi defined by the pairs of triples (ai, bi, c
i) and (u, v, w),

• X ′
i defined by the pairs of triples (ai, bi, c

i) and (u′, v′, wε),

where i ∈ I := {k : gcd(k, n) = 1 , 1 ≤ i < n/2}. Note that both of them can be
written as Si × S/G, but the action of G on the product Si × S is different in each
case.

We have the following theorem.

Theorem 3.7. Let p be a prime number p ≥ 13 and n > 6 any natural number
dividing either (p− 1)/2 or (p+ 1)/2. There are exactly φ(n) isomorphism classes
of Beauville surfaces with group G = PSL(2, p) and bitype ((2, 3, n), (p, p, p)), rep-
resented by the surfaces Xi and X

′
i constructed above.

Proof. By Proposition 3.2, when defining Beauville surfaces we can consider
triples of generators up to the action of I(G; li,mi, ni). Therefore the surfaces
defined by the following pairs of triples

t1(i) = (ai, bi, c
i ; u, v, w) , t2(i) = (ai, bi, c

i ; u′, v′, wε) ,
t′1(i) = (a′i, b

′
i, c

i ; u′, v′, wε), t′2(i) = (a′i, b
′
i, c

i ; u, v, w),

for 1 ≤ i < n/2 with gcd(i, n) = 1 account for all the Beauville surfaces of this
type. Note furthermore that each Xi and X

′
i are defined by the pairs of triples t1(i)

and t2(i) respectively.
Now, the pairs of triples t1(i) and t

′
1(i) (resp. t2(i) and t

′
2(i)) define the same

Beauville surface. In fact, by the two lemmas above any element of Aut(G) \
G sends the triple (ai, bi, c

i) to a triple I(G; 2, 3, n)−equivalent to (a′i, b
′
i, c

i), and
(u, v, w) to a triple I(G; p, p, p)−equivalent to (u′, v′, wε), and the claim follows from
Corollary 3.2.

However, for the same reason t1(i) and t2(i) define non-isomorphic Beauville
surfaces since, by Corollary 3.2, this happens if and only if there exists ψ ∈ Aut(G)
such that

ψ(ai, bi, c
i) ≡ (ai, bi, c

i) mod I(G; 2, 3, n) ,
ψ(u′, v′, wε) ≡ (u, v, w) mod I(G; p, p, p) ,

simultaneously. Now, the first relation may occur only if ψ ∈ G, and the second
one only if ψ 6∈ G.

On the other hand, if i 6= j, Corollary 3.3 implies that the surfaces defined by
t1(i) and t2(i) and the ones defined by t1(j) and t2(j) cannot be isomorphic, since
the Riemann surfaces of type (2, 3, n) involved in the construction of the first ones
are not isomorphic to the ones appearing in the second ones.

Finally, the condition p ≥ 13 follows from the fact that for prime numbers p
with 5 < p < 13 there are no natural numbers n > 6 dividing either (p − 1)/2 or
(p+ 1)/2. �

Now, the Beauville surface X1 can be written as E1 × E/G. Since, by Theo-
rem 1.2, for any Galois element σ such that σ(ζn) 6= ζ±1

n we have Eσ1 6∼= E1 and
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Eσ1 6∼= E1, we have at least φ(n)/2 non-homeomorphic conjugate Beauville surfaces

Xσi

1 =
Ei × E

PSL(2, p)
,

where σi are Galois elements satisfying σi(ζn) = ζjn with ij ≡ 1 mod n.
As a consequence we have the following.

Theorem 3.8. For each prime number p > 7 and each integer n > 6 dividing
either (p − 1)/2 or (p + 1)/2 there exist a Beauville surface X1 = E1 × E/G with
G = PSL(2, p) such that the following statements hold:

(i) E1 and E are G−coverings of type (2, 3, n) and (p, p, p) respectively;
(ii) the orbit of X1 under the action of the absolute Galois group Gal(Q/Q)

contains at least φ(n)/2 surfaces which are pairwise non-isomorphic.
(iii) in fact, these φ(n)/2 surfaces have pairwise non-isomorphic fundamental

groups, hence they are not homeomorphic to each other.

We can prove the same theorem for the surface X ′
1, thus we have two sets of

φ(n)/2 Beauville surfaces, and each of them consists of Galois conjugate surfaces
which are pairwise non-homeomorphic. It is not clear, however, whether these two
sets form a complete orbit or two separate orbits under the action of the absolute
Galois group.

With regard to this issue it should be said that, after a conversation on this
matter with G. A. Jones, he soon realised that replacing PSL(2, p) by PGL(2, p) one
could construct complete orbits of the absolute Galois group of explicit unbounded
size, consisting of Beauville surfaces with mutually non-isomorphic fundamental
groups (see [41]). In this case one is able to compute explicitly the complete
orbit thanks to the fact that the groups PGL(2, p) are complete, i.e. all their
automorphisms are inner. The methods used to compute the triples defining the
surfaces are similar to those used in section 1.5. The main theorem in [41], whose
results we include here only for completeness, states that for each prime p ≡ 19 mod
24 and each pair of divisors k, l > 10 of p−1 and p+1 such that (p−1)/k and (p+1)/l
are odd, there is an orbit of Gal(Q/Q) consisting of φ(m)/4 Beauville surfaces
with Beauville group PGL(2, p) which have mutually non-isomorphic fundamental
groups, where m = lcm(k, l).

With respect to the question of determining the fields of definition of Beauville
surfaces, raised by Bauer, Catanese and Grunewald (see [6]), the above theorem
shows that minimal fields of definition of Beauville surfaces can have arbitrarily
large degree over the field of rational numbers.
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[31] Girondo, E., González–Diez, G.: Genus two extremal surfaces: extremal discs, isometries and

Weierstrass points, Israel J. Math. 132 (2002), 221–238.
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